Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (6): 1349-1357    DOI: 10.11902/1005.4537.2022.347
Current Issue | Archive | Adv Search |
Influence of Thermal Aging on Corrosion Behavior of Ferritic-martensitic Steel P92 in Supercritical Water
YU Chenjun, ZHANG Tianyi, ZHANG Naiqiang, ZHU Zhongliang()
Key Laboratory of Power Station Energy Transfer, Conversion and System, Ministry of Education, North China Electric Power University, Beijing 102206, China
Cite this article: 

YU Chenjun, ZHANG Tianyi, ZHANG Naiqiang, ZHU Zhongliang. Influence of Thermal Aging on Corrosion Behavior of Ferritic-martensitic Steel P92 in Supercritical Water. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1349-1357.

Download:  HTML  PDF(20095KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ferritic-martensitic steel P92 was themally aged at 800 °C for 200 and 400 h, respectively. Then corrosion behavior of the aged P92 steels was investigated in supercritical water at 600 °C, 25 MPa up to 1500 h. The microstructure, oxidation kinetics of the steels, morphology and phase composition of oxide scales were characterized by means of SEM, TEM and XRD. The results indicate that after thermal ageing at 800 ℃, the P92 steel presented microstructure composed of coarsened martensitic lath, Ostwald ripening of M23C6 carbides and sub-grains. Furthermore, the oxidation kinetics curves of the aged P92 steels at 600 ℃ are between parabolic and cubic curves, while the weight gain increased with the increasing ageing time. The oxide scales are composed of Fe3O4, (Fe,Cr)3O4 and Cr2O3. It is also discovered that there is more cracks on oxide scales of the aged steels, which led to spallation of oxide scales, whereas no signs of spallation were found on the not aged steel.

Key words:  P92 steel      thermal aging      supercritical water      high-temperature oxidation      oxidation mechanism     
Received:  08 November 2022      32134.14.1005.4537.2022.347
ZTFLH:  TK245  
Fund: National Key Research and Development Program(2022YFB4100403)
Corresponding Authors:  ZHU Zhongliang, E-mail: zhzl@ncepu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.347     OR     https://www.jcscp.org/EN/Y2023/V43/I6/1349

Fig.1  Calculated mass fractions of the precipitates (a) and matrix (b) in P92 steel after aging at different temperatures
Fig.2  SEM metallographic structures of annealed P92 steel after aging for 0 h (a), 200 h (b) and 400 h (c)
Fig.3  Size distributions of the precipitates in P92 steel after aging for 0 h (a), 200 h (b) and 400 h (c)
Fig.4  TEM microstructure images of P92 steel after aging for 200 h (a) and 400 h (b)
Fig.5  Diffraction pattern and chemical components of the carbide precipitate in P92 steel aged for 400 h
Fig.6  Mass gains of P92 steel samples with different metallographic structures during exposure in SCW at 600 °C
Fig.7  XRD patterns of aged P92 steel after exposure in SCW for different time
Fig.8  Surface morphologies of P92 steel after 0 h (a, d, g), 200 h (b, e, h) and 400 h (c, f, i) aging and then oxidation in SCW for 500 h (a-c), 1000 h (d-f) and 1500 h (g-i)
Fig.9  Cross-sectional morphologies (a-c) and EDS line scannings (d-f) along the white lines for P92 steel aged for 0 h (a, d), 200 h (b, e) and 400 h (c, f) and then oxidized in SCW for 500 h
Fig.10  Cross-sectional morphologies (a-c) and EDS line scannings (d-f) along the white lines for P92 steel aged for 0 h (a, d), 200 h (b, e) and 400 h (c, f) and then oxidized in SCW for 1500 h
Fig.11  Area fractions of different layers of the oxide scales formed on aged P92 steel oxidized in SCW for 500 h (a) and 1500 h (b)
Fig.12  Cracking of the oxide scales formed on P92 steel aged for 200 h (a) and 400 h (b) and then oxidized in SCW for 1500 h
Fig.13  Exfoliation zone of P92 steel aged for 200 h and then oxidized in SCW for 1500 h (a), and surface morphology and EDS result in the zone b in Fig.13a (b)
Fig.14  Cross-sectional morphology of P92 steel aged for 400 h and then oxidized in SCW for 1500 h
1 Liu Y T, Chen Z Y, Zhu Z L, et al. SCC susceptibility of 2.25Cr1-Mo steel and its weld joints in high temperature steam [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 647
刘宇桐, 陈震宇, 朱忠亮 等. 2.25Cr1Mo钢及其焊接接头在高温水蒸气中的应力腐蚀开裂敏感性研究 [J]. 中国腐蚀与防护学报, 2022, 42: 647
doi: 10.11902/1005.4537.2021.157
2 Zhu Z L, Ma C H, Li Y Y, et al. Oxidation behavior of nickel-based alloy Inconel617B in supercritical water at 700 °C [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 655
朱忠亮, 马辰昊, 李宇旸 等. 镍基合金Inconel617B在700 °C超临界水环境中的氧化行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 655
doi: 10.11902/1005.4537.2021.145
3 Chen D L, Wang H Z, Hou S F, et al. Microstructural evolution of 12%Cr martensite steel weld joint at high temperature for 45000 hours service [J]. Thermal Power Generat., 2014, 43(1): 69
陈德龙, 王弘喆, 侯淑芳 等. 12%Cr马氏体钢焊缝金属45000 h高温服役老化分析 [J]. 热力发电, 2014, 43(1): 69
4 Yang X, Liao B, Xiao F R, et al. Ripening behavior of M23C6 carbides in P92 steel during aging at 800 °C [J]. J. Iron Steel Res. Int., 2017, 24: 858
doi: 10.1016/S1006-706X(17)30127-9
5 Saini N, Pandey C, Mahapatra M M. Characterization and evaluation of mechanical properties of CSEF P92 steel for varying normalizing temperature [J]. Mater. Sci. Eng., 2017, 688A: 250
6 Żurek J, Wessel E, Niewolak L, et al. Anomalous temperature dependence of oxidation kinetics during steam oxidation of ferritic steels in the temperature range 550-650 °C [J]. Corros. Sci., 2004, 46: 2301
doi: 10.1016/j.corsci.2004.01.010
7 Zhu Z L, Xu H, Jiang D F, et al. Influence of temperature on the oxidation behaviour of a ferritic-martensitic steel in supercritical water [J]. Corros. Sci., 2016, 113: 172
doi: 10.1016/j.corsci.2016.10.020
8 Zhu Z L, Xu H, Jiang D F, et al. The role of dissolved oxygen in supercritical water in the oxidation of ferritic-martensitic steel [J]. J. Supercrit. Fluids, 2016, 108: 56
doi: 10.1016/j.supflu.2015.10.017
9 Zhang N Q, Zhu Z L, Lv F B, et al. Influence of exposure pressure on oxidation behavior of the ferritic–martensitic steel in steam and supercritical water [J]. Oxid. Met., 2016, 86: 113
doi: 10.1007/s11085-016-9624-1
10 Baltušnikas A, Grybėnas A, Kriūkienė R, et al. Evolution of crystallographic structure of M23C6 carbide under thermal aging of P91 steel [J]. J. Mater. Eng. Perform., 2019, 28: 1480
doi: 10.1007/s11665-019-03935-1
11 Bischoff J, Motta A T. Oxidation behavior of ferritic–martensitic and ODS steels in supercritical water [J]. J. Nucl. Mater., 2012, 424: 261
doi: 10.1016/j.jnucmat.2012.03.009
12 Li T P. The role of metallic grain boundary in high temperature oxidation [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 53
李铁藩. 金属晶界在高温氧化中的作用 [J]. 中国腐蚀与防护学报, 2002, 22: 53
13 Yang J Q. Thermodynamic simulation and analysis of X12CrMo-WVNbN10-1-1 steel precipitation based on JMatPro software [J]. J. Mater. Metall., 2021, 20: 74
杨佳奇. 基于JMatPro软件的X12CrMoWVNbN10-1-1钢析出相热力学模拟和分析 [J]. 材料与冶金学报, 2021, 20: 74
14 Liu X, Wang H, Zhu Z L, et al. Oxidation characteristics of austenitic heat-resistant steel HR3C and Sanicro25 in supercritical water for power station [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 529
刘 晓, 王 海, 朱忠亮 等. 电站用奥氏体耐热钢HR3C与Sanicro25在超临界水中的氧化特性 [J]. 中国腐蚀与防护学报, 2020, 40: 529
15 DeHoff R T, Rhines F N. Quantitative Microscopy [M]. New York: McGraw-Hill, 1968: 75
16 Abe F. Coarsening behavior of lath and its effect on creep rates in tempered martensitic 9Cr-W steels [J]. Mater. Sci. Eng., 2004, 387/389A: 565
17 Birks N, Meier G H, Pettit F S. Introduction to the High Temperature Oxidation of Metals [M]. Cambridge: Cambridge University Press, 2006
18 Rhines F N, Wolf J S. The role of oxide microstructure and growth stresses in the high-temperature scaling of nickel [J]. Metall. Trans., 1970, 1: 1701
19 Smyth D M. The Defect Chemistry of Metal Oxides [M]. Oxford: Oxford University Press, 2000
20 Tan L Z, Yang Y, Allen T R. Porosity prediction in supercritical water exposed ferritic/martensitic steel HCM12A [J]. Corros. Sci., 2006, 48: 4234
doi: 10.1016/j.corsci.2006.05.026
21 Gillot B, Ferriot J F, Dupré G, et al. Study of the oxidation kinetics of finely-divided magnetites. II - Influence of chromium substitution [J]. Mater. Res. Bull., 1976, 11: 843
doi: 10.1016/0025-5408(76)90124-0
22 Ueda M, Kawamura K, Maruyama T. Void formation in magnetite scale formed on iron at 823 K-elucidation by chemical potential distribution [J]. Mater. Sci. Forum, 2006, 522/523: 37
23 Chen K, Zhang L F, Shen Z. Understanding the surface oxide evolution of T91 ferritic-martensitic steel in supercritical water through advanced characterization [J]. Acta Mater., 2020, 194: 156
doi: 10.1016/j.actamat.2020.05.016
[1] LIU Shuyu, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, DUAN Haitao, XIA Siyao, XIA Chunhuai. High Temperature Oxidation and Solid Na2SO4 Induced Corrosion of CVD Aluminide Coating on K444 Alloy in Air[J]. 中国腐蚀与防护学报, 2023, 43(3): 553-560.
[2] ZHOU Wenhui, SONG Jian, CHEN Zehao, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Low Temperature Degradation on Tribological Properties of YSZ Thermal Barrier Coatings[J]. 中国腐蚀与防护学报, 2023, 43(2): 261-270.
[3] HE Nankai, WANG Yongxin, ZHOU Shengguo, ZHOU Dapeng, LI Jinlong. Oxidation Behavior in Water Vapor and Tribological Property in Atmosphere with 60%Relative Humidity at 580 ℃ for Inconel 718 Alloy[J]. 中国腐蚀与防护学报, 2023, 43(2): 271-279.
[4] YANG Yifan, SUN Wenyao, CHEN Minghui, WANG Jinlong, WANG Fuhui. Oxidation Behavior of a Single Crystal Ni-based Superalloy N5 and Its Nanocrystalline Coating at 900 ℃ in O2 and O2+20%H2O Environment[J]. 中国腐蚀与防护学报, 2023, 43(1): 55-61.
[5] ZHU Zhongliang, MA Chenhao, LI Yuyang, XIAO Bo, YUAN Xiaohu, WANG Shuo, XU Hong, ZHANG Naiqiang. Oxidation Behavior of Nickel-based Alloy Inconel617B in Supercritical Water at 700 ℃[J]. 中国腐蚀与防护学报, 2022, 42(4): 655-661.
[6] YIN Xubao, LI Yuqiao, GAO Rongjie. Preparation of Superhydrophobic Surface on Copper Substrate and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.
[7] ZHANG Jie, QU Jiyu, LU Jinling, LIU Qian, LUO Xingqi. Sulfidation Corrosion Behavior of Nickel-based Alloys (Incoloy800, 825 and 625) in Sub/supercritical Water[J]. 中国腐蚀与防护学报, 2021, 41(6): 892-898.
[8] LI Ruitao, XIAO Bo, LIU Xiao, ZHU Zhongliang, CHENG Yi, LI Junwan, CAO Jieyu, DING Haimin, ZHANG Naiqiang. Corrosion Behavior of Low Alloy Heat-resistant Steel T23 in High-temperature Supercritical Carbon Dioxide[J]. 中国腐蚀与防护学报, 2021, 41(3): 327-334.
[9] LIU Xiao, WANG Hai, ZHU Zhongliang, LI Ruitao, CHEN Zhenyu, FANG Xudong, XU Fanghong, ZHANG Naiqiang. Oxidation Characteristics of Austenitic Heat-resistant Steel HR3C and Sanicro25 in Supercritical Water for Power Station[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[10] FANG Xudong, LIU Xiao, XU Fanghong, LI Ruitao, ZHU Zhongliang, ZHANG Naiqiang. Oxidation Behavior in Supercritical Water of Domestic Austenitic Steel C-HRA-5 for Uultra-supercritical Power Stations[J]. 中国腐蚀与防护学报, 2020, 40(3): 266-272.
[11] ZHENG Yanxin, LIU Ying, SONG Qingsong, ZHENG Feng, JIA Yuchuan, HAN Peide. High-temperature Oxidation Behavior and Wear Resistance of Copper-based Composites with Reinforcers of C, ZrSiO4 and Fe[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[12] Dongbai XIE,Youyu ZHOU,Jintao LU,Wen WANG,Shenglong ZHU,Fuhui WANG. Effect of Al/Si Content on Corrosion of Ni-based Alloys in Supercritical Water[J]. 中国腐蚀与防护学报, 2019, 39(1): 68-76.
[13] Dongbai XIE, Youyu ZHOU, Jintao LU, Wen WANG, Shenglong ZHU, Fuhui WANG. Effect of Cr Content on Oxidation of Ni-based Alloy in Supercritical Water[J]. 中国腐蚀与防护学报, 2018, 38(4): 358-364.
[14] Yue LI, Jian WANG, Yong ZHANG, Jingang BAI, Yadi HU, Yongfeng QIAO, Caili ZHANG, Peide HAN. Analysis of Initial Oxidation Process of 2205 Duplex Stainless Steel in Closed Container at High Temperature[J]. 中国腐蚀与防护学报, 2018, 38(3): 296-302.
[15] Chao SUN, Xiao YANG, Yuhua WEN. Effect of High-Al Austenitic Stainless Alloy Coatings Prepared by Magnetron Sputtering on High Temperature Oxidation Resistance of 316 Stainless Steel[J]. 中国腐蚀与防护学报, 2017, 37(6): 590-596.
No Suggested Reading articles found!