|
|
Influence of Thermal Aging on Corrosion Behavior of Ferritic-martensitic Steel P92 in Supercritical Water |
YU Chenjun, ZHANG Tianyi, ZHANG Naiqiang, ZHU Zhongliang() |
Key Laboratory of Power Station Energy Transfer, Conversion and System, Ministry of Education, North China Electric Power University, Beijing 102206, China |
|
Cite this article:
YU Chenjun, ZHANG Tianyi, ZHANG Naiqiang, ZHU Zhongliang. Influence of Thermal Aging on Corrosion Behavior of Ferritic-martensitic Steel P92 in Supercritical Water. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1349-1357.
|
Abstract Ferritic-martensitic steel P92 was themally aged at 800 °C for 200 and 400 h, respectively. Then corrosion behavior of the aged P92 steels was investigated in supercritical water at 600 °C, 25 MPa up to 1500 h. The microstructure, oxidation kinetics of the steels, morphology and phase composition of oxide scales were characterized by means of SEM, TEM and XRD. The results indicate that after thermal ageing at 800 ℃, the P92 steel presented microstructure composed of coarsened martensitic lath, Ostwald ripening of M23C6 carbides and sub-grains. Furthermore, the oxidation kinetics curves of the aged P92 steels at 600 ℃ are between parabolic and cubic curves, while the weight gain increased with the increasing ageing time. The oxide scales are composed of Fe3O4, (Fe,Cr)3O4 and Cr2O3. It is also discovered that there is more cracks on oxide scales of the aged steels, which led to spallation of oxide scales, whereas no signs of spallation were found on the not aged steel.
|
Received: 08 November 2022
32134.14.1005.4537.2022.347
|
|
Fund: National Key Research and Development Program(2022YFB4100403) |
Corresponding Authors:
ZHU Zhongliang, E-mail: zhzl@ncepu.edu.cn
|
1 |
Liu Y T, Chen Z Y, Zhu Z L, et al. SCC susceptibility of 2.25Cr1-Mo steel and its weld joints in high temperature steam [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 647
|
|
刘宇桐, 陈震宇, 朱忠亮 等. 2.25Cr1Mo钢及其焊接接头在高温水蒸气中的应力腐蚀开裂敏感性研究 [J]. 中国腐蚀与防护学报, 2022, 42: 647
doi: 10.11902/1005.4537.2021.157
|
2 |
Zhu Z L, Ma C H, Li Y Y, et al. Oxidation behavior of nickel-based alloy Inconel617B in supercritical water at 700 °C [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 655
|
|
朱忠亮, 马辰昊, 李宇旸 等. 镍基合金Inconel617B在700 °C超临界水环境中的氧化行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 655
doi: 10.11902/1005.4537.2021.145
|
3 |
Chen D L, Wang H Z, Hou S F, et al. Microstructural evolution of 12%Cr martensite steel weld joint at high temperature for 45000 hours service [J]. Thermal Power Generat., 2014, 43(1): 69
|
|
陈德龙, 王弘喆, 侯淑芳 等. 12%Cr马氏体钢焊缝金属45000 h高温服役老化分析 [J]. 热力发电, 2014, 43(1): 69
|
4 |
Yang X, Liao B, Xiao F R, et al. Ripening behavior of M23C6 carbides in P92 steel during aging at 800 °C [J]. J. Iron Steel Res. Int., 2017, 24: 858
doi: 10.1016/S1006-706X(17)30127-9
|
5 |
Saini N, Pandey C, Mahapatra M M. Characterization and evaluation of mechanical properties of CSEF P92 steel for varying normalizing temperature [J]. Mater. Sci. Eng., 2017, 688A: 250
|
6 |
Żurek J, Wessel E, Niewolak L, et al. Anomalous temperature dependence of oxidation kinetics during steam oxidation of ferritic steels in the temperature range 550-650 °C [J]. Corros. Sci., 2004, 46: 2301
doi: 10.1016/j.corsci.2004.01.010
|
7 |
Zhu Z L, Xu H, Jiang D F, et al. Influence of temperature on the oxidation behaviour of a ferritic-martensitic steel in supercritical water [J]. Corros. Sci., 2016, 113: 172
doi: 10.1016/j.corsci.2016.10.020
|
8 |
Zhu Z L, Xu H, Jiang D F, et al. The role of dissolved oxygen in supercritical water in the oxidation of ferritic-martensitic steel [J]. J. Supercrit. Fluids, 2016, 108: 56
doi: 10.1016/j.supflu.2015.10.017
|
9 |
Zhang N Q, Zhu Z L, Lv F B, et al. Influence of exposure pressure on oxidation behavior of the ferritic–martensitic steel in steam and supercritical water [J]. Oxid. Met., 2016, 86: 113
doi: 10.1007/s11085-016-9624-1
|
10 |
Baltušnikas A, Grybėnas A, Kriūkienė R, et al. Evolution of crystallographic structure of M23C6 carbide under thermal aging of P91 steel [J]. J. Mater. Eng. Perform., 2019, 28: 1480
doi: 10.1007/s11665-019-03935-1
|
11 |
Bischoff J, Motta A T. Oxidation behavior of ferritic–martensitic and ODS steels in supercritical water [J]. J. Nucl. Mater., 2012, 424: 261
doi: 10.1016/j.jnucmat.2012.03.009
|
12 |
Li T P. The role of metallic grain boundary in high temperature oxidation [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 53
|
|
李铁藩. 金属晶界在高温氧化中的作用 [J]. 中国腐蚀与防护学报, 2002, 22: 53
|
13 |
Yang J Q. Thermodynamic simulation and analysis of X12CrMo-WVNbN10-1-1 steel precipitation based on JMatPro software [J]. J. Mater. Metall., 2021, 20: 74
|
|
杨佳奇. 基于JMatPro软件的X12CrMoWVNbN10-1-1钢析出相热力学模拟和分析 [J]. 材料与冶金学报, 2021, 20: 74
|
14 |
Liu X, Wang H, Zhu Z L, et al. Oxidation characteristics of austenitic heat-resistant steel HR3C and Sanicro25 in supercritical water for power station [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 529
|
|
刘 晓, 王 海, 朱忠亮 等. 电站用奥氏体耐热钢HR3C与Sanicro25在超临界水中的氧化特性 [J]. 中国腐蚀与防护学报, 2020, 40: 529
|
15 |
DeHoff R T, Rhines F N. Quantitative Microscopy [M]. New York: McGraw-Hill, 1968: 75
|
16 |
Abe F. Coarsening behavior of lath and its effect on creep rates in tempered martensitic 9Cr-W steels [J]. Mater. Sci. Eng., 2004, 387/389A: 565
|
17 |
Birks N, Meier G H, Pettit F S. Introduction to the High Temperature Oxidation of Metals [M]. Cambridge: Cambridge University Press, 2006
|
18 |
Rhines F N, Wolf J S. The role of oxide microstructure and growth stresses in the high-temperature scaling of nickel [J]. Metall. Trans., 1970, 1: 1701
|
19 |
Smyth D M. The Defect Chemistry of Metal Oxides [M]. Oxford: Oxford University Press, 2000
|
20 |
Tan L Z, Yang Y, Allen T R. Porosity prediction in supercritical water exposed ferritic/martensitic steel HCM12A [J]. Corros. Sci., 2006, 48: 4234
doi: 10.1016/j.corsci.2006.05.026
|
21 |
Gillot B, Ferriot J F, Dupré G, et al. Study of the oxidation kinetics of finely-divided magnetites. II - Influence of chromium substitution [J]. Mater. Res. Bull., 1976, 11: 843
doi: 10.1016/0025-5408(76)90124-0
|
22 |
Ueda M, Kawamura K, Maruyama T. Void formation in magnetite scale formed on iron at 823 K-elucidation by chemical potential distribution [J]. Mater. Sci. Forum, 2006, 522/523: 37
|
23 |
Chen K, Zhang L F, Shen Z. Understanding the surface oxide evolution of T91 ferritic-martensitic steel in supercritical water through advanced characterization [J]. Acta Mater., 2020, 194: 156
doi: 10.1016/j.actamat.2020.05.016
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|