|
|
Research Progress of Metal Corrosion Caused by Extracellular Polymeric Substances of Microorganisms |
KE Nan, NI Yingying, HE Jiaqi, LIU Haixian, JIN Zhengyu, LIU Hongwei( ) |
Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China |
|
Cite this article:
KE Nan, NI Yingying, HE Jiaqi, LIU Haixian, JIN Zhengyu, LIU Hongwei. Research Progress of Metal Corrosion Caused by Extracellular Polymeric Substances of Microorganisms. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 278-294.
|
Abstract It is well known that the widely distributed microorganisms can induce corrosion of metallic materials, i.e., microbiologically influenced corrosion (MIC), which is also an important form of corrosion. However, it is found that extracellular polymeric substances (EPS), as metabolites of microorganisms, play an important role in the corrosion process. In this work, the characteristics of metabolites of typical corrosive microorganisms such as bacteria, fungi, and microalgae, as well as their possible influence on the corrosion of metallic materials are systematically summarized. And then, the structure and functions of EPS, the primary metabolites of microorganisms, are mainly analyzed. The possible functions of EPS are discussed. Finally, the acceleration or inhibition effects of EPS on the corrosion of metallic materials and the relevant mechanisms were analyzed too. This work aims to provide reference for the subsequent research on the corrosion of metallic materials caused by EPS and corresponding protective countermeasures as well.
|
Received: 17 May 2023
32134.14.1005.4537.2023.164
|
|
Fund: National Natural Science Foundation of China(52271083);Guangdong Basic and Applied Basic Research Foundation(2023A1515012146);Fundamental Research Funds for the Central Universities(22qntd0801) |
Corresponding Authors:
LIU Hongwei, E-mail: liuhw35@mail.sysu.edu.cn
|
1 |
Vigneron A, Head I M, Tsesmetzis N. Damage to offshore production facilities by corrosive microbial biofilms[J]. Appl. Microbiol. Biotechnol., 2018, 102: 2525
doi: 10.1007/s00253-018-8808-9
pmid: 29423635
|
2 |
Moran M A. The global ocean microbiome[J]. Science, 2015, 350: aac8455
doi: 10.1126/science.aac8455
|
3 |
Machuca L L, Jeffrey R, Melchers R E. Microorganisms associated with corrosion of structural steel in diverse atmospheres[J]. Int. Biodeterior. Biodegrad., 2016, 114: 234
doi: 10.1016/j.ibiod.2016.06.015
|
4 |
Makita H. Iron-oxidizing bacteria in marine environments: recent progresses and future directions[J]. World J. Microbiol. Biotechnol., 2018, 34: 110
doi: 10.1007/s11274-018-2491-y
|
5 |
Jia R, Unsal T, Xu D K, et al. Microbiologically influenced corrosion and current mitigation strategies: a state of the art review[J]. Int. Biodeterior. Biodegrad., 2019, 137: 42
doi: 10.1016/j.ibiod.2018.11.007
|
6 |
Rajala P, Huttunen-Saarivirta E, Bomberg M, et al. Corrosion and biofouling tendency of carbon steel in anoxic groundwater containing sulphate reducing bacteria and methanogenic archaea[J]. Corros. Sci., 2019, 159: 108148
doi: 10.1016/j.corsci.2019.108148
|
7 |
Khamis E, El-Rafey E, Gaber A M A, et al. Comparative study between green and red algae in the control of corrosion and deposition of scale in water systems[J]. Desalin. Water Treat., 2016, 57: 23571
doi: 10.1080/19443994.2015.1135480
|
8 |
Beech I B, Sunner J. Biocorrosion: towards understanding interactions between biofilms and metals[J]. Curr. Opin. Biotechnol., 2004, 15: 181
doi: 10.1016/j.copbio.2004.05.001
|
9 |
Dinh H T, Kuever J, Mußmann M, et al. Iron corrosion by novel anaerobic microorganisms[J]. Nature, 2004, 427: 829
doi: 10.1038/nature02321
|
10 |
Seviour T, Derlon N, Dueholm M S, et al. Extracellular polymeric substances of biofilms: Suffering from an identity crisis[J]. Water Res., 2019, 151: 1
doi: S0043-1354(18)30941-2
pmid: 30557778
|
11 |
Liu H W, Gu T Y, Asif M, et al. The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria[J]. Corros. Sci., 2017, 114: 102
doi: 10.1016/j.corsci.2016.10.025
|
12 |
Chan K Y, Xu L C, Fang H H P. Anaerobic electrochemical corrosion of mild steel in the presence of extracellular polymeric substances produced by a culture enriched in sulfate-reducing bacteria[J]. Environ. Sci. Technol., 2002, 36: 1720
doi: 10.1021/es011187c
|
13 |
Stadler R, Fuerbeth W, Harneit K, et al. First evaluation of the applicability of microbial extracellular polymeric substances for corrosion protection of metal substrates[J]. Electrochim. Acta, 2008, 54: 91
doi: 10.1016/j.electacta.2008.04.082
|
14 |
Moradi M, Song Z L, Xiao T. Exopolysaccharide produced by Vibrio neocaledonicus sp. as a green corrosion inhibitor: production and structural characterization[J]. J. Mater. Sci. Technol., 2018, 34: 2447
doi: 10.1016/j.jmst.2018.05.019
|
15 |
Jin J T, Wu G X, Zhang Z H, et al. Effect of extracellular polymeric substances on corrosion of cast iron in the reclaimed wastewater[J]. Bioresour. Technol., 2014, 165: 162
doi: 10.1016/j.biortech.2014.01.117
|
16 |
Gaines R H. Bacterial activity as a corrosive influence in the soil[J]. Ind. Eng. Chem., 1910, 2: 128
|
17 |
Kuehr C A H V W, van der Vlugt L S. The graphitization of cast iron as an electro biochemical process in anaerobic soils[J]. Water, 1934, 18: 147
|
18 |
Muyzer G, Stams A J M. The ecology and biotechnology of sulphate-reducing bacteria[J]. Nat. Rev. Microbiol., 2008, 6: 441
doi: 10.1038/nrmicro1892
pmid: 18461075
|
19 |
King R A, Miller J D A, Smith J S. Corrosion of mild steel by iron sulphides[J]. Br. Corros. J., 1973, 8: 137
doi: 10.1179/000705973798322251
|
20 |
Gu T Y. Theoretical modeling of the possibility of acid producing bacteria causing fast pitting biocorrosion[J]. J. Microb. Biochem. Technol., 2014, 6: 68
|
21 |
Thomsen U S, Meng R L C, Larsen J. Monitoring and risk assessment of microbiologically influenced corrosion in offshore pipelines[A]. Proceedings of the CORROSION 2016[C]. Vancouver: NACE, 2016: 7194
|
22 |
Meyer B. Approaches to prevention, removal and killing of biofilms[J]. Int. Biodeterior. Biodegrad., 2003, 51: 249
doi: 10.1016/S0964-8305(03)00047-7
|
23 |
Duan J Z, Wu S R, Zhang X J, et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater[J]. Electrochim. Acta, 2008, 54: 22
doi: 10.1016/j.electacta.2008.04.085
|
24 |
Blackwood D J. An electrochemist perspective of microbiologically influenced corrosion[J]. Corros. Mater. Degrad., 2020, 1: 59
doi: 10.3390/cmd1010005
|
25 |
Javaherdashti R. Microbiologically Influenced Corrosion: An Engineering Insight[M]. London: Springer, 2008
|
26 |
AlAbbas F M, Williamson C, Bhola S M, et al. Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy, high-strength steel (API-5L X80)[J]. Int. Biodeterior. Biodegrad., 2013, 78: 34
doi: 10.1016/j.ibiod.2012.10.014
|
27 |
Dou W W, Liu J L, Cai W Z, et al. Electrochemical investigation of increased carbon steel corrosion via extracellular electron transfer by a sulfate reducing bacterium under carbon source starvation[J]. Corros. Sci., 2019, 150: 258
doi: 10.1016/j.corsci.2019.02.005
|
28 |
Dou W W, Jia R, Jin P, et al. Investigation of the mechanism and characteristics of copper corrosion by sulfate reducing bacteria[J]. Corros. Sci., 2018, 144: 237
doi: 10.1016/j.corsci.2018.08.055
|
29 |
Huang G T, Chan K Y, Fang H H P. Microbiologically induced corrosion of 70Cu-30Ni alloy in anaerobic seawater[J]. J. Electrochem. Soc., 2004, 151: B434
doi: 10.1149/1.1756153
|
30 |
Cui L Y, Liu Z Y, Xu D K, et al. The study of microbiologically influenced corrosion of 2205 duplex stainless steel based on high-resolution characterization[J]. Corros. Sci., 2020, 174: 108842
doi: 10.1016/j.corsci.2020.108842
|
31 |
Huang L Y, Chang W W, Zhang D W, et al. Acceleration of corrosion of 304 stainless steel by outward extracellular electron transfer of Pseudomonas aeruginosa biofilm[J]. Corros. Sci., 2022, 199: 110159
doi: 10.1016/j.corsci.2022.110159
|
32 |
Pu Y A, Dou W W, Gu T Y, et al. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2020, 47: 10
doi: 10.1016/j.jmst.2020.02.008
|
33 |
Li J, Du C W, Liu Z Y, et al. Electrochemical studies of microbiologically influenced corrosion of X80 steel by nitrate-reducing Bacillus licheniformis under anaerobic conditions[J]. J. Mater. Sci. Technol., 2022, 118: 208
doi: 10.1016/j.jmst.2021.12.026
|
34 |
Juzeliūnas E, Ramanauskas R, Lugauskas A, et al. Influence of wild strain Bacillus mycoides on metals: from corrosion acceleration to environmentally friendly protection[J]. Electrochim. Acta, 2006, 51: 6085
doi: 10.1016/j.electacta.2006.01.067
|
35 |
Wang H, Ju L K, Castaneda H, et al. Corrosion of carbon steel C1010 in the presence of iron oxidizing bacteria Acidithiobacillus ferrooxidans [J]. Corros. Sci., 2014, 89: 250
doi: 10.1016/j.corsci.2014.09.005
|
36 |
Yue Y Y, Lv M Y, Du M. The corrosion behavior and mechanism of X65 steel induced by iron-oxidizing bacteria in the seawater environment[J]. Mater. Corros., 2019, 70: 1852
|
37 |
Dong Y Q, Jiang B T, Xu D K, et al. Severe microbiologically influenced corrosion of S32654 super austenitic stainless steel by acid producing bacterium Acidithiobacillus caldus SM-1[J]. Bioelectrochemistry, 2018, 123: 34
doi: 10.1016/j.bioelechem.2018.04.014
|
38 |
Cai D L, Wu J Y, Chai K. Microbiologically influenced corrosion behavior of carbon steel in the presence of marine bacteria Pseudomonas sp. and Vibrio sp.[J]. ACS Omega, 2021, 6: 3780
doi: 10.1021/acsomega.0c05402
|
39 |
Liu H W, Fu C Y, Gu T Y, et al. Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water[J]. Corros. Sci., 2015, 100: 484
doi: 10.1016/j.corsci.2015.08.023
|
40 |
Xi G F, Zhao X D, Wang S, et al. Synergistic effect between sulfate-reducing bacteria and pseudomonas aeruginosa on corrosion behavior of Q235 steel[J]. Int. J. Electrochem. Sci., 2020, 15: 361
doi: 10.20964/2020.01.38
|
41 |
Bahram M, Netherway T. Fungi as mediators linking organisms and ecosystems[J]. FEMS Microbiol. Rev., 2022, 46: fuab058
doi: 10.1093/femsre/fuab058
|
42 |
Zhang T S, Wang J L, Zhang G A, et al. The corrosion promoting mechanism of Aspergillus niger on 5083 aluminum alloy and inhibition performance of miconazole nitrate[J]. Corros. Sci., 2020, 176: 108930
doi: 10.1016/j.corsci.2020.108930
|
43 |
He J Q, Tan Y, Liu H X, et al. Extracellular polymeric substances secreted by marine fungus Aspergillus terreus: full characterization and detailed effects on aluminum alloy corrosion[J]. Corros. Sci., 2022, 209: 110703
doi: 10.1016/j.corsci.2022.110703
|
44 |
Qu Q, Li S L, Li L, et al. Adsorption and corrosion behaviour of Trichoderma harzianum for AZ31B magnesium alloy in artificial seawater[J]. Corros. Sci., 2017, 118: 12
doi: 10.1016/j.corsci.2017.01.005
|
45 |
Juzeliūnas E, Ramanauskas R, Lugauskas A, et al. Microbially influenced corrosion of zinc and aluminium – Two-year subjection to influence of Aspergillus niger [J]. Corros. Sci., 2007, 49: 4098
doi: 10.1016/j.corsci.2007.05.004
|
46 |
Dai X Y, Wang H, Ju L K, et al. Corrosion of aluminum alloy 2024 caused by Aspergillus niger [J]. Int. Biodeterior. Biodegrad., 2016, 115: 1
doi: 10.1016/j.ibiod.2016.07.009
|
47 |
Qu Q, Wang L, Li L, et al. Effect of the fungus, Aspergillus niger, on the corrosion behaviour of AZ31B magnesium alloy in artificial seawater[J]. Corros. Sci., 2015, 98: 249
doi: 10.1016/j.corsci.2015.05.038
|
48 |
Jirón-Lazos U, Corvo F, De la Rosa S C, et al. Localized corrosion of aluminum alloy 6061 in the presence of Aspergillus niger [J]. Int. Biodeterior. Biodegrad., 2018, 133: 17
doi: 10.1016/j.ibiod.2018.05.007
|
49 |
Bai Z H, Xiao K, Chen L H, et al. Corrosion inhibition of titanium by Paecilomyces variotii and Aspergillus niger in an aqueous environment[J]. Int. J. Electrochem. Sci., 2018, 13: 2033
doi: 10.20964/2018.02.70
|
50 |
Yu D, Kurola J M, Lähde K, et al. Biogas production and methanogenic archaeal community in mesophilic and thermophilic anaerobic co-digestion processes[J]. J. Environ. Manage., 2014, 143: 54
doi: 10.1016/j.jenvman.2014.04.025
pmid: 24837280
|
51 |
Woese C R, Kandler O, Wheelis M L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya[J]. Proc. Natl. Acad. Sci. USA, 1990, 87: 4576
doi: 10.1073/pnas.87.12.4576
pmid: 2112744
|
52 |
Leininger S, Urich T, Schloter M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils[J]. Nature, 2006, 442: 806
doi: 10.1038/nature04983
|
53 |
Usher K M, Kaksonen A H, MacLeod I D. Marine rust tubercles harbour iron corroding archaea and sulphate reducing bacteria[J]. Corros. Sci., 2014, 83: 189
doi: 10.1016/j.corsci.2014.02.014
|
54 |
Chen S Q, Deng H, Li J R, et al. Study of E690 steel corrosion in seawater containing methanogenic archaea[J]. J. Mater. Eng. Perform., 2022, 31: 9129
doi: 10.1007/s11665-022-06919-w
|
55 |
Qian H C, Ma L W, Zhang D W, et al. Microbiologically influenced corrosion of 304 stainless steel by halophilic archaea Natronorubrum tibetense [J]. J. Mater. Sci. Technol., 2020, 46: 12
doi: 10.1016/j.jmst.2019.04.047
|
56 |
Qian H C, Zhang J T, Cui T Y, et al. Influence of NaCl concentration on microbiologically influenced corrosion of carbon steel by halophilic archaeon Natronorubrum tibetense [J]. Bioelectrochemistry, 2021, 140: 107746
doi: 10.1016/j.bioelechem.2021.107746
|
57 |
Suarez E M, Lepkova K, Kinsella B, et al. Aggressive corrosion of steel by a thermophilic microbial consortium in the presence and absence of sand[J]. Int. Biodeterior. Biodegrad., 2019, 137: 137
doi: 10.1016/j.ibiod.2018.12.003
|
58 |
Qian H C, Liu S Y, Wang P, et al. Investigation of microbiologically influenced corrosion of 304 stainless steel by aerobic thermoacidophilic archaeon Metallosphaera cuprina [J]. Bioelectrochemistry, 2020, 136: 107635
doi: 10.1016/j.bioelechem.2020.107635
|
59 |
Vandana, Monika P, Surajit D. Bacterial extracellular polymeric substances: Biosynthesis and interaction with environmental pollutants[J]. Chemosphere, 2023, 332: 138876
doi: 10.1016/j.chemosphere.2023.138876
|
60 |
Yoon H S, Muller K M, Sheath R G, et al. Defining the major lineages of red algae (Rhodophyta)[J]. J. Phycol., 2006, 42: 482
doi: 10.1111/jpy.2006.42.issue-2
|
61 |
De Muynck W, Ramirez A M, De Belie N, et al. Evaluation of strategies to prevent algal fouling on white architectural and cellular concrete[J]. Int. Biodeterior. Biodegrad., 2009, 63: 679
doi: 10.1016/j.ibiod.2009.04.007
|
62 |
Li L X, Liu W M, Liang T J, et al. The adsorption mechanisms of algae-bacteria symbiotic system and its fast formation process[J]. Bioresour. Technol., 2020, 315: 123854
doi: 10.1016/j.biortech.2020.123854
|
63 |
Mieszkin S, Callow M E, Callow J A. Interactions between microbial biofilms and marine fouling algae: a mini review[J]. Biofouling, 2013, 29: 1097
doi: 10.1080/08927014.2013.828712
pmid: 24047430
|
64 |
Selvarajan R, Sibanda T, Venkatachalam S, et al. Distribution, interaction and functional profiles of epiphytic bacterial communities from the rocky intertidal seaweeds, South Africa[J]. Sci. Rep., 2019, 9: 19835
doi: 10.1038/s41598-019-56269-2
pmid: 31882618
|
65 |
Kalnaowakul P, Xu D K, Rodchanarowan A. Accelerated corrosion of 316L stainless steel caused by Shewanella algae biofilms[J]. ACS Appl. Bio. Mater., 2020, 3: 2185
doi: 10.1021/acsabm.0c00037
pmid: 35025270
|
66 |
Khadraoui A, Khelifa A, Hachama K, et al. Synergistic effect of potassium iodide in controlling the corrosion of steel in acid medium by Mentha pulegium extract[J]. Res. Chem. Intermed., 2015, 41: 7973
doi: 10.1007/s11164-014-1870-8
|
67 |
Zheng D D, Wang G J. Preparation of algae extract as green corrosion inhibitor for Q235 steel in chloride ion solutions[J]. Int. J. Electrochem. Sci., 2021, 16: 210734
doi: 10.20964/2021.07.64
|
68 |
Khoukhi F, Kebbouche-Gana S, Djelali N E, et al. Efficiency evaluation of anti-corrosion treatment of carbon steel by extracts of red algae collected from mediterranean coast[J]. Rev. Chim., 2021, 72: 59
doi: 10.37358/RC.72.21.2
|
69 |
Benabbouha T, Nmila R, Siniti M, et al. The brown algae Cystoseira Baccata extract as a friendly corrosion inhibitor on carbon steel in acidic media[J]. SN Appl. Sci., 2020, 2: 662
doi: 10.1007/s42452-020-2492-y
|
70 |
Spavieri J, Allmendinger A, Kaiser M, et al. Antimycobacterial, antiprotozoal and cytotoxic potential of twenty-one brown algae (phaeophyceae) from British and Irish waters[J]. Phytother Res., 2010, 24: 1724
doi: 10.1002/ptr.3208
pmid: 20564461
|
71 |
Bakke R, Trulear M G, Robinson J A, et al. Activity of Pseudomonas aeruginosa in biofilms: steady state[J]. Biotechnol. Bioeng., 1984, 26: 1418
pmid: 18551671
|
72 |
Di Martino P. Extracellular polymeric substances, a key element in understanding biofilm phenotype[J]. AIMS Microbiol., 2018, 4: 274
doi: 10.3934/microbiol.2018.2.274
pmid: 31294215
|
73 |
Flemming H C, Wingender J, Griegbe T, et al. Physico-chemical properties of biofilms[M]. Amsterdam: Harwood Academic Publishers, 2000: 19
|
74 |
Nielsen P H, Jahn A, Palmgren R. Conceptual model for production and composition of exopolymers in biofilms[J]. Water Sci. Technol., 1997, 36: 11
doi: 10.2166/wst.1997.0002
|
75 |
Sheng G P, Yu H Q, Li X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review[J]. Biotechnol. Adv., 2010, 28: 882
doi: 10.1016/j.biotechadv.2010.08.001
|
76 |
Arcila J S, Buitrón G. Influence of solar irradiance levels on the formation of microalgae-bacteria aggregates for municipal wastewater treatment[J]. Algal Res., 2017, 27: 190
doi: 10.1016/j.algal.2017.09.011
|
77 |
Vu C H T, Chun S J, Seo S H, et al. Bacterial community enhances flocculation efficiency of Ettlia sp. by altering extracellular polymeric substances profile[J]. Bioresour. Technol., 2019, 281: 56
doi: 10.1016/j.biortech.2019.02.062
|
78 |
Jorand F, Zartarian F, Thomas F, et al. Chemical and structural (2D) linkage between bacteria within activated sludge flocs[J]. Water Res., 1995, 29: 1639
doi: 10.1016/0043-1354(94)00350-G
|
79 |
Poxon T L, Darby J L. Extracellular polyanions in digested sludge: measurement and relationship to sludge dewaterability[J]. Water Res., 1997, 31: 749
doi: 10.1016/S0043-1354(96)00319-3
|
80 |
Zhao L T, She Z L, Jin C J, et al. Characteristics of extracellular polymeric substances from sludge and biofilm in a simultaneous nitrification and denitrification system under high salinity stress[J]. Bioprocess. Biosyst. Eng., 2016, 39: 1375
doi: 10.1007/s00449-016-1613-x
|
81 |
Lin H J, Zhang M J, Wang F Y, et al. A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: characteristics, roles in membrane fouling and control strategies[J]. J. Membr. Sci., 2014, 460: 110
doi: 10.1016/j.memsci.2014.02.034
|
82 |
Simões M, Simões L C, Vieira M J. A review of current and emergent biofilm control strategies[J]. LWT-Food Sci. Technol., 2010, 43: 573
doi: 10.1016/j.lwt.2009.12.008
|
83 |
Xiao R, Zheng Y. Overview of microalgal extracellular polymeric substances (EPS) and their applications[J]. Biotechnol. Adv., 2016, 34: 1225
doi: S0734-9750(16)30105-7
pmid: 27576096
|
84 |
Fallahi A, Rezvani F, Asgharnejad H, et al. Interactions of microalgae-bacteria consortia for nutrient removal from wastewater: a review[J]. Chemosphere, 2021, 272: 129878
doi: 10.1016/j.chemosphere.2021.129878
|
85 |
Koo H, Yamada K M. Dynamic cell-matrix interactions modulate microbial biofilm and tissue 3D microenvironments[J]. Curr. Opin. Cell Biol., 2016, 42: 102
doi: S0955-0674(16)30091-6
pmid: 27257751
|
86 |
Flemming H C, Wingender J, Szewzyk U, et al. Biofilms: an emergent form of bacterial life[J]. Nat. Rev. Microbiol., 2016, 14: 563
doi: 10.1038/nrmicro.2016.94
|
87 |
Sepehri A, Sarrafzadeh M H. Effect of nitrifiers community on fouling mitigation and nitrification efficiency in a membrane bioreactor[J]. Chem. Eng. Process.-Process Intensif., 2018, 128: 10
doi: 10.1016/j.cep.2018.04.006
|
88 |
Liu Y Q, Liu Y, Tay J H. The effects of extracellular polymeric substances on the formation and stability of biogranules[J]. Appl. Microbiol. Biotechnol., 2004, 65: 143
|
89 |
Shukla A, Mehta K, Parmar J, et al. Depicting the exemplary knowledge of microbial exopolysaccharides in a nutshell[J]. Eur. Polym. J., 2019, 119: 298
doi: 10.1016/j.eurpolymj.2019.07.044
|
90 |
Barcelos M C S, Vespermann K A C, Pelissari F M, et al. Current status of biotechnological production and applications of microbial exopolysaccharides[J]. Crit. Rev. Food Sci. Nutr., 2020, 60: 1475
doi: 10.1080/10408398.2019.1575791
pmid: 30740985
|
91 |
Baruah R, Das D, Goyal A. Heteropolysaccharides from lactic acid bacteria: current trends and applications[J]. J. Prob. Health, 2016, 4: 1000141
|
92 |
Min W H, Fang X B, Wu T, et al. Characterization and antioxidant activity of an acidic exopolysaccharide from Lactobacillus plantarum JLAU103[J]. J. Biosci. Bioeng., 2019, 127: 758
doi: 10.1016/j.jbiosc.2018.12.004
|
93 |
Hu T, Cui Y H, Zhang Y S, et al. Genome analysis and physiological characterization of four Streptococcus thermophilus strains isolated from Chinese traditional fermented milk[J]. Front. Microbiol., 2020, 11: 184
doi: 10.3389/fmicb.2020.00184
|
94 |
Sutherland I W. Microbial polysaccharides from Gram-negative bacteria[J]. Int. Dairy J., 2001, 11: 663
doi: 10.1016/S0958-6946(01)00112-1
|
95 |
Marvasi M, Visscher P T, Martinez L C. Exopolymeric substances (EPS) from Bacillus subtilis: polymers and genes encoding their synthesis[J]. FEMS Microbiol. Lett., 2010, 313: 1
doi: 10.1111/fml.2010.313.issue-1
|
96 |
Flemming H C, Wingender J. The biofilm matrix[J]. Nat. Rev. Microbiol., 2010, 8: 623
doi: 10.1038/nrmicro2415
|
97 |
Nwodo U U, Green E, Okoh A I. Bacterial exopolysaccharides: functionality and prospects[J]. Int. J. Mol. Sci., 2012, 13: 14002
doi: 10.3390/ijms131114002
pmid: 23203046
|
98 |
Sutherland I W. Novel and established applications of microbial polysaccharides[J]. Trends Biotechnol., 1998, 16: 41
doi: 10.1016/S0167-7799(97)01139-6
pmid: 9470230
|
99 |
Rehm B H A. Alginate production: precursor biosynthesis, polymerization and secretion[A]. Rehm B H A. Alginates: Biology and Applications[M]. Berlin, Heidelberg: Springer, 2009: 55
|
100 |
Felt O, Einmahl S, Furrer P, et al. Polymeric Systems for Ophthalmic Drug Delivery[M]. Boca Raton: CRC Press, 2001: 391
|
101 |
Amado I R, Vázquez J A, Pastrana L, et al. Cheese whey: a cost-effective alternative for hyaluronic acid production by Streptococcus zooepidemicus[J]. Food Chem., 2016, 198: 54
doi: 10.1016/j.foodchem.2015.11.062
pmid: 26769504
|
102 |
Stevenson G, Andrianopoulos K, Hobbs M, et al. Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid[J]. J. Bacteriol., 1996, 178: 4885
pmid: 8759852
|
103 |
Singh R, Paul D, Jain R K. Biofilms: implications in bioremediation[J]. Trends Microbiol., 2006, 14: 389
pmid: 16857359
|
104 |
Schmid J, Meyer V, Sieber V. Scleroglucan: biosynthesis, production and application of a versatile hydrocolloid[J]. Appl. Microbiol. Biotechnol., 2011, 91: 937
doi: 10.1007/s00253-011-3438-5
pmid: 21732244
|
105 |
Pochanavanich P, Suntornsuk W. Fungal chitosan production and its characterization[J]. Lett. Appl. Microbiol., 2002, 35: 17
pmid: 12081543
|
106 |
Zhang Y F, Kong H L, Fang Y P, et al. Schizophyllan: a review on its structure, properties, bioactivities and recent developments[J]. Bioact. Carbohydr. Dietary Fibre, 2013, 1: 53
doi: 10.1016/j.bcdf.2013.01.002
|
107 |
Miranda C C B O, Dekker R F H, Serpeloni J M, et al. Anticlastogenic activity exhibited by botryosphaeran, a new exopolysaccharide produced by Botryosphaeria rhodina MAMB-05[J]. Int. J. Biol. Macromol., 2008, 42: 172
doi: 10.1016/j.ijbiomac.2007.10.010
|
108 |
More T T, Yadav J S S, Yan S, et al. Extracellular polymeric substances of bacteria and their potential environmental applications[J]. J. Environ. Manage., 2014, 144: 1
doi: 10.1016/j.jenvman.2014.05.010
pmid: 24907407
|
109 |
Ding Z J, Bourven I, Guibaud G, et al. Role of extracellular polymeric substances (EPS) production in bioaggregation: application to wastewater treatment[J]. Appl. Microbiol. Biotechnol., 2015, 99: 9883
doi: 10.1007/s00253-015-6964-8
pmid: 26381665
|
110 |
Wang J, Yu H Q. Biosynthesis of polyhydroxybutyrate (PHB) and extracellular polymeric substances (EPS) by Ralstonia eutropha ATCC 17699 in batch cultures[J]. Appl. Microbiol. Biotechnol., 2007, 75: 871
pmid: 17318537
|
111 |
Hug I, Feldman M F. Analogies and homologies in lipopolysaccharide and glycoprotein biosynthesis in bacteria[J]. Glycobiology, 2011, 21: 138
doi: 10.1093/glycob/cwq148
pmid: 20871101
|
112 |
Gonçalves A L, Ferreira C, Loureiro J A, et al. Surface physicochemical properties of selected single and mixed cultures of microalgae and cyanobacteria and their relationship with sedimentation kinetics[J]. Bioresour. Bioprocess., 2015, 2: 21
doi: 10.1186/s40643-015-0051-y
|
113 |
Vlassov V V, Laktionov P P, Rykova E Y. Extracellular nucleic acids[J]. BioEssays, 2007, 29: 654
pmid: 17563084
|
114 |
Speziale P, Pietrocola G, Foster T J, et al. Protein-based biofilm matrices in Staphylococci[J]. Front. Cell. Infect. Microbiol., 2014, 4: 171
|
115 |
Peña-Méndez E M, Havel J, Patočka J. Humic substances-compounds of still unknown structure: applications in agriculture, industry, environment, and biomedicine[J]. J. Appl. Biomed., 2005, 3: 13
doi: 10.32725/jab.2005.002
|
116 |
Moura M N, Martín M J, Burguillo F J. A comparative study of the adsorption of humic acid, fulvic acid and phenol onto Bacillus subtilis and activated sludge[J]. J. Hazard. Mater., 2007, 149: 42
doi: 10.1016/j.jhazmat.2007.02.074
|
117 |
Buffle J, Staub C. Measurement of complexation properties of metal ions in natural conditions by ultrafiltration: measurement of equilibrium constants for complexation of zinc by synthetic and natural ligands[J]. Anal. Chem., 1984, 56: 2837
doi: 10.1021/ac00278a047
|
118 |
Soberón-Chávez G, Lépine F, Déziel E. Production of rhamnolipids by Pseudomonas aeruginosa [J]. Appl. Microbiol. Biotechnol., 2005, 68: 718
pmid: 16160828
|
119 |
Salehizadeh H, Shojaosadati S A. Extracellular biopolymeric flocculants: recent trends and biotechnological importance[J]. Biotechnol. Adv., 2001, 19: 371
doi: 10.1016/s0734-9750(01)00071-4
pmid: 14538073
|
120 |
Comte S, Guibaud G, Baudu M. Biosorption properties of extracellular polymeric substances (EPS) resulting from activated sludge according to their type: soluble or bound[J]. Process Biochem., 2006, 41: 815
doi: 10.1016/j.procbio.2005.10.014
|
121 |
Lurie M, Rebhun M. Effect of properties of polyelectrolytes on their interaction with particulates and soluble organics[J]. Water Sci. Technol., 1997, 36: 93
|
122 |
Chen W P, Song J H, Jiang S J, et al. Influence of extracellular polymeric substances from activated sludge on the aggregation kinetics of silver and silver sulfide nanoparticles[J]. Front. Environ. Sci. Eng., 2021, 16: 16
doi: 10.1007/s11783-021-1450-2
|
123 |
Solís M, Solís A, Inés Pérez H, et al. Microbial decolouration of azo dyes: a review[J]. Process Biochem., 2012, 47: 1723
doi: 10.1016/j.procbio.2012.08.014
|
124 |
Comte S, Guibaud G, Baudu M. Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and EPS complexation properties: Part I. Comparison of the efficiency of eight EPS extraction methods[J]. Enzyme Microb. Technol., 2006, 38: 237
doi: 10.1016/j.enzmictec.2005.06.016
|
125 |
Comte S, Guibaud G, Baudu M. Effect of extraction method on EPS from activated sludge: an HPSEC investigation[J]. J. Hazard. Mater., 2007, 140: 129
pmid: 16879910
|
126 |
Pan X L, Wang J L, Zhang D Y, et al. Zn2+ sorption and mechanism by EPS of mixed SRB population[J]. Res. Environ. Sci., 2005, 18(6): 53
|
|
潘响亮, 王建龙, 张道勇 等. 硫酸盐还原菌混合菌群胞外聚合物对Zn2+的吸附和机理[J]. 环境科学研究, 2005, 18(6): 53
|
127 |
Li W W, Yu H Q. Insight into the roles of microbial extracellular polymer substances in metal biosorption[J]. Bioresour. Technol., 2014, 160: 15
doi: 10.1016/j.biortech.2013.11.074
|
128 |
Yan S J, Cai Y G, Li H Q, et al. Enhancement of cadmium adsorption by EPS-montmorillonite composites[J]. Environ. Pollut., 2019, 252: 1509
doi: S0269-7491(19)31480-0
pmid: 31272010
|
129 |
Neyens E, Baeyens J, Dewil R, et al. Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering[J]. J. Hazard. Mater., 2004, 106: 83
doi: 10.1016/j.jhazmat.2003.11.014
pmid: 15177096
|
130 |
Xiao Y, Zhao F. Electrochemical roles of extracellular polymeric substances in biofilms[J]. Curr. Opin. Electrochem., 2017, 4: 206
|
131 |
Zheng Y, Quan X C, Zhuo M H, et al. In-situ formation and self-immobilization of biogenic Fe oxides in anaerobic granular sludge for enhanced performance of acidogenesis and methanogenesis[J]. Sci. Total Environ., 2021, 787: 147400
doi: 10.1016/j.scitotenv.2021.147400
|
132 |
Zhuravel R, Huang H C, Polycarpou G, et al. Backbone charge transport in double-stranded DNA[J]. Nat. Nanotechnol., 2020, 15: 836
doi: 10.1038/s41565-020-0741-2
|
133 |
Saunders S H, Tse E C M, Yates M D, et al. Extracellular DNA promotes efficient extracellular electron transfer by pyocyanin in Pseudomonas aeruginosa biofilms[J]. Cell, 2020, 182: 919
doi: S0092-8674(20)30871-0
pmid: 32763156
|
134 |
Wang X B, Chen T T, Gao C Y, et al. Use of extracellular polymeric substances as natural redox mediators to enhance denitrification performance by accelerating electron transfer and carbon source metabolism[J]. Bioresour. Technol., 2022, 345: 126522
doi: 10.1016/j.biortech.2021.126522
|
135 |
Park J K, Lee J W, Jung J Y. Cadmium uptake capacity of two strains of Saccharomyces cerevisiae cells[J]. Enzyme Microb. Technol., 2003, 33: 371
doi: 10.1016/S0141-0229(03)00133-9
|
136 |
Chen S Q, Zhang D. Study of corrosion behavior of copper in 3.5 wt.% NaCl solution containing extracellular polymeric substances of an aerotolerant sulphate-reducing bacteria[J]. Corros. Sci., 2018, 136: 275
doi: 10.1016/j.corsci.2018.03.017
|
137 |
Zhu J F, Chen S C, Sun L Q, et al. LincRNA-EPS impairs host antiviral immunity by antagonizing viral RNA-PKR interaction[J]. EMBO Rep., 2022, 23: e53937
doi: 10.15252/embr.202153937
|
138 |
Beech I B, Zinkevich V, Tapper R, et al. Direct involvement of an extracellular complex produced by a marine sulfate- reducing bacterium in deterioration of steel[J]. Geomicrobiol. J., 1998, 15: 121
doi: 10.1080/01490459809378069
|
139 |
Zhang Y X, Liu H X, Jin Z Y, et al. Fungi corrosion of high-strength aluminum alloys with different microstructures caused by marine Aspergillus terreus under seawater drop[J]. Corros. Sci., 2023, 212: 110960
doi: 10.1016/j.corsci.2023.110960
|
140 |
Cheng S, Lau K T, Chen S G, et al. Microscopical observation of the marine bacterium Vibrio natriegeus growth on metallic corrosion[J]. Mater. Manuf. Processes, 2010, 25: 293
doi: 10.1080/10426911003747642
|
141 |
Ding Q M, Liu R Y, Cui Y Y, et al. Influence of electron mediator on microbiologically influenced corrosion behavior of 2024 aluminum alloy[J]. Corrosion, 2023, 79: 146
doi: 10.5006/4111
|
142 |
Khan M S, Yang C G, Zhao Y, et al. An induced corrosion inhibition of X80 steel by using marine bacterium Marinobacter salsuginis [J]. Colloids Surf., 2020, 189B: 110858
|
143 |
Finkenstadt V L, Côté G L, Willett J L. Corrosion protection of low-carbon steel using exopolysaccharide coatings from Leuconostoc mesenteroides [J]. Biotechnol. Lett., 2011, 33: 1093
doi: 10.1007/s10529-011-0539-2
pmid: 21290167
|
144 |
Pedersen A, Hermansson M. Bacterial corrosion of iron in seawater in situ, and in aerobic and anaerobic model systems[J]. FEMS Microbiol. Lett., 1991, 86: 139
doi: 10.1111/fml.1991.86.issue-2
|
145 |
Dubiel M, Hsu C H, Chien C C, et al. Microbial iron respiration can protect steel from corrosion[J]. Appl. Environ. Microbiol., 2002, 68: 1440
doi: 10.1128/AEM.68.3.1440-1445.2002
|
146 |
Bautista B E T, Wikieł A J, Datsenko I, et al. Influence of extracellular polymeric substances (EPS) from Pseudomonas NCIMB 2021 on the corrosion behaviour of 70Cu-30Ni alloy in seawater[J]. J. Electroanal. Chem., 2015, 737: 184
doi: 10.1016/j.jelechem.2014.09.024
|
147 |
Li S, Qu Q, Li L, et al. Bacillus cereus s-EPS as a dual bio-functional corrosion and scale inhibitor in artificial seawater[J]. Water Res., 2019, 166
|
148 |
Pan X L, Wang J L, Zhang D Y. Copper(Ⅱ) sorption by EPS of mixed SRB population and mechanism[J]. Technol. Water Treat., 2005, 31(9): 25
|
|
潘响亮, 王建龙, 张道勇. 硫酸盐还原菌混合菌群胞外聚合物对Cu2+的吸附和机理[J]. 水处理研究, 2005, 31(9): 25
|
149 |
Mishra S P. Removal of heavy metal ions from copper and zinc industrial effluents using Penicillium sp[J]. Int. J. Environ. Sci. Technol., 2022, 19(9): 9107
doi: 10.1007/s13762-021-03607-5
|
150 |
Dong Y H, Guo N, Liu T, et al. Effect of extracellular polymeric substances isolated from Vibrio natriegens on corrosion of carbon steel in seawater[J]. Corros. Eng. Sci. Technol., 2016, 51: 455
doi: 10.1080/1478422X.2016.1139319
|
151 |
Szatmári D, Sárkány P, Kocsis B, et al. Intracellular ion concentrations and cation-dependent remodelling of bacterial MreB assemblies[J]. Sci. Rep., 2020, 10(1): 12002
doi: 10.1038/s41598-020-68960-w
pmid: 32686735
|
152 |
Anjana K, Kaushik A, Kiran B, et al. Biosorption of Cr(VI) by immobilized biomass of two indigenous strains of cyanobacteria isolated from metal contaminated soil[J]. J. Hazard. Mater., 2007, 148: 383
pmid: 17403568
|
153 |
Sulaymon A H, Mohammed A A, Al-Musawi T J. Competitive biosorption of lead, cadmium, copper, and arsenic ions using algae[J]. Environ. Sci. Pollut. Res., 2013, 20: 3011
doi: 10.1007/s11356-012-1208-2
|
154 |
Matheickal J T, Yu Q, Feltham J. Cu(II) binding by E. radiata biomaterial[J]. Environ. Technol., 1997, 18: 25
doi: 10.1080/09593331808616509
|
155 |
Cao B C, Zhao Z P, Peng L L, et al. Silver nanoparticles boost charge-extraction efficiency in Shewanella microbial fuel cells[J]. Science, 2021, 373: 1336
doi: 10.1126/science.abf3427
|
156 |
Boggs M A, Jiao Y Q, Dai Z R, et al. Interactions of plutonium with Pseudomonas sp. strain EPS-1W and its extracellular polymeric substances[J]. Appl. Environ. Microbiol., 2016, 82: 7093
doi: 10.1128/AEM.02572-16
|
157 |
Lai C Y, Dong Q Y, Chen J X, et al. Role of extracellular polymeric substances in a methane based membrane biofilm reactor reducing vanadate[J]. Environ. Sci. Technol., 2018, 52: 10680
doi: 10.1021/acs.est.8b02374
|
158 |
Naveed S, Li C H, Lu X D, et al. Microalgal extracellular polymeric substances and their interactions with metal(loid)s: a review[J]. Crit. Rev. Environ. Sci. Technol., 2019, 49: 1769
doi: 10.1080/10643389.2019.1583052
|
159 |
Ozturk S, Aslim B, Suludere Z. Cadmium(II) sequestration characteristics by two isolates of Synechocystis sp. in terms of exopolysaccharide (EPS) production and monomer composition[J]. Bioresour. Technol., 2010, 101: 9742
doi: 10.1016/j.biortech.2010.07.105
|
160 |
Zhang Z L, Cai R H, Zhang W H, et al. A novel exopolysaccharide with metal adsorption capacity produced by a marine bacterium Alteromonas sp. JL2810[J]. Mar. Drugs, 2017, 15: 175
doi: 10.3390/md15060175
|
161 |
Xie Q. The complexation of extracellular polymeric substances with Cadmium in alleviating the toxicity on Chlorella vulgaris [D]. Xiangtan: Xiangtan University, 2019
|
|
谢琪婷. 小球藻胞外聚合物与镉的络合作用对镉毒性效应的缓解[D]. 湘潭: 湘潭大学, 2019
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|