Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (2): 278-294    DOI: 10.11902/1005.4537.2023.164
Current Issue | Archive | Adv Search |
Research Progress of Metal Corrosion Caused by Extracellular Polymeric Substances of Microorganisms
KE Nan, NI Yingying, HE Jiaqi, LIU Haixian, JIN Zhengyu, LIU Hongwei()
Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
Cite this article: 

KE Nan, NI Yingying, HE Jiaqi, LIU Haixian, JIN Zhengyu, LIU Hongwei. Research Progress of Metal Corrosion Caused by Extracellular Polymeric Substances of Microorganisms. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 278-294.

Download:  HTML  PDF(6790KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

It is well known that the widely distributed microorganisms can induce corrosion of metallic materials, i.e., microbiologically influenced corrosion (MIC), which is also an important form of corrosion. However, it is found that extracellular polymeric substances (EPS), as metabolites of microorganisms, play an important role in the corrosion process. In this work, the characteristics of metabolites of typical corrosive microorganisms such as bacteria, fungi, and microalgae, as well as their possible influence on the corrosion of metallic materials are systematically summarized. And then, the structure and functions of EPS, the primary metabolites of microorganisms, are mainly analyzed. The possible functions of EPS are discussed. Finally, the acceleration or inhibition effects of EPS on the corrosion of metallic materials and the relevant mechanisms were analyzed too. This work aims to provide reference for the subsequent research on the corrosion of metallic materials caused by EPS and corresponding protective countermeasures as well.

Key words:  microbiologically influenced corrosion      EPS      bacteria      fungi      microalgae     
Received:  17 May 2023      32134.14.1005.4537.2023.164
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(52271083);Guangdong Basic and Applied Basic Research Foundation(2023A1515012146);Fundamental Research Funds for the Central Universities(22qntd0801)
Corresponding Authors:  LIU Hongwei, E-mail: liuhw35@mail.sysu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.164     OR     https://www.jcscp.org/EN/Y2024/V44/I2/278

Fig.1  Corrosion mechanism of 2205 duplex stainless caused by SRB[30]
Fig.2  Formation process of corrosion products and steel localized corrosion in the presence of IOB[36]
Fig.3  Schematic diagram of corrosion of E690 steel caused by methanogenic archaea[54]
Fig.4  Schematic diagrams of EPS (a) and cell structure (b)[81]
Fig.5  Chemical structures of some EPS polysaccharides: (a) dextran, (b) cellulose, (c) alginate, (d) gellan gum, (e) hyaluronic acid
StrainEPSEPS monomer composition
Leuconostoc mesenteroides[97]DextranGlucose
Xanthomonas campestris[98]XanthanGlucose, mannose, glucuronic acid, acetate, pyruvate

Azotobacter vinelandii, Pseudomonas[99]

Aeruginosa

AlginateMannoturonic acid, gulonic acid, acetate
Acetobacter xylinum[99]AcetanGlucose, mannose, glucuronic acid, acetate
Rhizobium meliloti[100]CurdlanGlucose
Sphingomonas paucimobilis[100]GellanGlucose, rhamnose, glucuronic acid, acetate, glycerate
Streptococcus zooepidemicus, Bacillus subtilis[101]HyaluronanGlucuronic acid, n-acetylglucosamine
Escherichia coli K12[102]Colanic acidGlucose, fucose, galactose, glucuronic acid
Aerobasidium pullulans[103]PullulanMaltotriose
Sclerotium rolfsii[104]ScleroglucanGlucose
Rhizopus oryzae, Aspergillus niger[105]ChitosanGlucosamine, n-acetylglucosamine
Schizophyllum commune[106]SchizophyllanGlucose
Botryosphaeria rhodina[107]Botryosphaeranβ-(1-3),β-(1-6) glucan glucose gentiobiose
Table 1  Comparison of the common microbial exopolysaccharides and their components
Fig.6  Chemical structure of typical proteins in EPS: (a) poly-γ-glutamic acid, (b) poly-L-lysine[108]
Fig.7  Specific types of proteins in EPS secreted by Aspergillus terreus[43]
Fig.8  Chemical structure of humus in EPS: (a) humic acid, (b) fulvic acid[108]
Fig.9  Schematic diagram of EPS induced flocculation[122]
Fig.10  Schematic diagram of EPS induced adsorption action[128]
Fig.11  Direct and mediated EET mechanism of MIC[130]
Fig. 12  Schematic diagram of the complexation of EPS and metal[59]
Fig.13  Schematic diagram of the interaction of EPS and metal cations[161]
1 Vigneron A, Head I M, Tsesmetzis N. Damage to offshore production facilities by corrosive microbial biofilms[J]. Appl. Microbiol. Biotechnol., 2018, 102: 2525
doi: 10.1007/s00253-018-8808-9 pmid: 29423635
2 Moran M A. The global ocean microbiome[J]. Science, 2015, 350: aac8455
doi: 10.1126/science.aac8455
3 Machuca L L, Jeffrey R, Melchers R E. Microorganisms associated with corrosion of structural steel in diverse atmospheres[J]. Int. Biodeterior. Biodegrad., 2016, 114: 234
doi: 10.1016/j.ibiod.2016.06.015
4 Makita H. Iron-oxidizing bacteria in marine environments: recent progresses and future directions[J]. World J. Microbiol. Biotechnol., 2018, 34: 110
doi: 10.1007/s11274-018-2491-y
5 Jia R, Unsal T, Xu D K, et al. Microbiologically influenced corrosion and current mitigation strategies: a state of the art review[J]. Int. Biodeterior. Biodegrad., 2019, 137: 42
doi: 10.1016/j.ibiod.2018.11.007
6 Rajala P, Huttunen-Saarivirta E, Bomberg M, et al. Corrosion and biofouling tendency of carbon steel in anoxic groundwater containing sulphate reducing bacteria and methanogenic archaea[J]. Corros. Sci., 2019, 159: 108148
doi: 10.1016/j.corsci.2019.108148
7 Khamis E, El-Rafey E, Gaber A M A, et al. Comparative study between green and red algae in the control of corrosion and deposition of scale in water systems[J]. Desalin. Water Treat., 2016, 57: 23571
doi: 10.1080/19443994.2015.1135480
8 Beech I B, Sunner J. Biocorrosion: towards understanding interactions between biofilms and metals[J]. Curr. Opin. Biotechnol., 2004, 15: 181
doi: 10.1016/j.copbio.2004.05.001
9 Dinh H T, Kuever J, Mußmann M, et al. Iron corrosion by novel anaerobic microorganisms[J]. Nature, 2004, 427: 829
doi: 10.1038/nature02321
10 Seviour T, Derlon N, Dueholm M S, et al. Extracellular polymeric substances of biofilms: Suffering from an identity crisis[J]. Water Res., 2019, 151: 1
doi: S0043-1354(18)30941-2 pmid: 30557778
11 Liu H W, Gu T Y, Asif M, et al. The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria[J]. Corros. Sci., 2017, 114: 102
doi: 10.1016/j.corsci.2016.10.025
12 Chan K Y, Xu L C, Fang H H P. Anaerobic electrochemical corrosion of mild steel in the presence of extracellular polymeric substances produced by a culture enriched in sulfate-reducing bacteria[J]. Environ. Sci. Technol., 2002, 36: 1720
doi: 10.1021/es011187c
13 Stadler R, Fuerbeth W, Harneit K, et al. First evaluation of the applicability of microbial extracellular polymeric substances for corrosion protection of metal substrates[J]. Electrochim. Acta, 2008, 54: 91
doi: 10.1016/j.electacta.2008.04.082
14 Moradi M, Song Z L, Xiao T. Exopolysaccharide produced by Vibrio neocaledonicus sp. as a green corrosion inhibitor: production and structural characterization[J]. J. Mater. Sci. Technol., 2018, 34: 2447
doi: 10.1016/j.jmst.2018.05.019
15 Jin J T, Wu G X, Zhang Z H, et al. Effect of extracellular polymeric substances on corrosion of cast iron in the reclaimed wastewater[J]. Bioresour. Technol., 2014, 165: 162
doi: 10.1016/j.biortech.2014.01.117
16 Gaines R H. Bacterial activity as a corrosive influence in the soil[J]. Ind. Eng. Chem., 1910, 2: 128
17 Kuehr C A H V W, van der Vlugt L S. The graphitization of cast iron as an electro biochemical process in anaerobic soils[J]. Water, 1934, 18: 147
18 Muyzer G, Stams A J M. The ecology and biotechnology of sulphate-reducing bacteria[J]. Nat. Rev. Microbiol., 2008, 6: 441
doi: 10.1038/nrmicro1892 pmid: 18461075
19 King R A, Miller J D A, Smith J S. Corrosion of mild steel by iron sulphides[J]. Br. Corros. J., 1973, 8: 137
doi: 10.1179/000705973798322251
20 Gu T Y. Theoretical modeling of the possibility of acid producing bacteria causing fast pitting biocorrosion[J]. J. Microb. Biochem. Technol., 2014, 6: 68
21 Thomsen U S, Meng R L C, Larsen J. Monitoring and risk assessment of microbiologically influenced corrosion in offshore pipelines[A]. Proceedings of the CORROSION 2016[C]. Vancouver: NACE, 2016: 7194
22 Meyer B. Approaches to prevention, removal and killing of biofilms[J]. Int. Biodeterior. Biodegrad., 2003, 51: 249
doi: 10.1016/S0964-8305(03)00047-7
23 Duan J Z, Wu S R, Zhang X J, et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater[J]. Electrochim. Acta, 2008, 54: 22
doi: 10.1016/j.electacta.2008.04.085
24 Blackwood D J. An electrochemist perspective of microbiologically influenced corrosion[J]. Corros. Mater. Degrad., 2020, 1: 59
doi: 10.3390/cmd1010005
25 Javaherdashti R. Microbiologically Influenced Corrosion: An Engineering Insight[M]. London: Springer, 2008
26 AlAbbas F M, Williamson C, Bhola S M, et al. Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy, high-strength steel (API-5L X80)[J]. Int. Biodeterior. Biodegrad., 2013, 78: 34
doi: 10.1016/j.ibiod.2012.10.014
27 Dou W W, Liu J L, Cai W Z, et al. Electrochemical investigation of increased carbon steel corrosion via extracellular electron transfer by a sulfate reducing bacterium under carbon source starvation[J]. Corros. Sci., 2019, 150: 258
doi: 10.1016/j.corsci.2019.02.005
28 Dou W W, Jia R, Jin P, et al. Investigation of the mechanism and characteristics of copper corrosion by sulfate reducing bacteria[J]. Corros. Sci., 2018, 144: 237
doi: 10.1016/j.corsci.2018.08.055
29 Huang G T, Chan K Y, Fang H H P. Microbiologically induced corrosion of 70Cu-30Ni alloy in anaerobic seawater[J]. J. Electrochem. Soc., 2004, 151: B434
doi: 10.1149/1.1756153
30 Cui L Y, Liu Z Y, Xu D K, et al. The study of microbiologically influenced corrosion of 2205 duplex stainless steel based on high-resolution characterization[J]. Corros. Sci., 2020, 174: 108842
doi: 10.1016/j.corsci.2020.108842
31 Huang L Y, Chang W W, Zhang D W, et al. Acceleration of corrosion of 304 stainless steel by outward extracellular electron transfer of Pseudomonas aeruginosa biofilm[J]. Corros. Sci., 2022, 199: 110159
doi: 10.1016/j.corsci.2022.110159
32 Pu Y A, Dou W W, Gu T Y, et al. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2020, 47: 10
doi: 10.1016/j.jmst.2020.02.008
33 Li J, Du C W, Liu Z Y, et al. Electrochemical studies of microbiologically influenced corrosion of X80 steel by nitrate-reducing Bacillus licheniformis under anaerobic conditions[J]. J. Mater. Sci. Technol., 2022, 118: 208
doi: 10.1016/j.jmst.2021.12.026
34 Juzeliūnas E, Ramanauskas R, Lugauskas A, et al. Influence of wild strain Bacillus mycoides on metals: from corrosion acceleration to environmentally friendly protection[J]. Electrochim. Acta, 2006, 51: 6085
doi: 10.1016/j.electacta.2006.01.067
35 Wang H, Ju L K, Castaneda H, et al. Corrosion of carbon steel C1010 in the presence of iron oxidizing bacteria Acidithiobacillus ferrooxidans [J]. Corros. Sci., 2014, 89: 250
doi: 10.1016/j.corsci.2014.09.005
36 Yue Y Y, Lv M Y, Du M. The corrosion behavior and mechanism of X65 steel induced by iron-oxidizing bacteria in the seawater environment[J]. Mater. Corros., 2019, 70: 1852
37 Dong Y Q, Jiang B T, Xu D K, et al. Severe microbiologically influenced corrosion of S32654 super austenitic stainless steel by acid producing bacterium Acidithiobacillus caldus SM-1[J]. Bioelectrochemistry, 2018, 123: 34
doi: 10.1016/j.bioelechem.2018.04.014
38 Cai D L, Wu J Y, Chai K. Microbiologically influenced corrosion behavior of carbon steel in the presence of marine bacteria Pseudomonas sp. and Vibrio sp.[J]. ACS Omega, 2021, 6: 3780
doi: 10.1021/acsomega.0c05402
39 Liu H W, Fu C Y, Gu T Y, et al. Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water[J]. Corros. Sci., 2015, 100: 484
doi: 10.1016/j.corsci.2015.08.023
40 Xi G F, Zhao X D, Wang S, et al. Synergistic effect between sulfate-reducing bacteria and pseudomonas aeruginosa on corrosion behavior of Q235 steel[J]. Int. J. Electrochem. Sci., 2020, 15: 361
doi: 10.20964/2020.01.38
41 Bahram M, Netherway T. Fungi as mediators linking organisms and ecosystems[J]. FEMS Microbiol. Rev., 2022, 46: fuab058
doi: 10.1093/femsre/fuab058
42 Zhang T S, Wang J L, Zhang G A, et al. The corrosion promoting mechanism of Aspergillus niger on 5083 aluminum alloy and inhibition performance of miconazole nitrate[J]. Corros. Sci., 2020, 176: 108930
doi: 10.1016/j.corsci.2020.108930
43 He J Q, Tan Y, Liu H X, et al. Extracellular polymeric substances secreted by marine fungus Aspergillus terreus: full characterization and detailed effects on aluminum alloy corrosion[J]. Corros. Sci., 2022, 209: 110703
doi: 10.1016/j.corsci.2022.110703
44 Qu Q, Li S L, Li L, et al. Adsorption and corrosion behaviour of Trichoderma harzianum for AZ31B magnesium alloy in artificial seawater[J]. Corros. Sci., 2017, 118: 12
doi: 10.1016/j.corsci.2017.01.005
45 Juzeliūnas E, Ramanauskas R, Lugauskas A, et al. Microbially influenced corrosion of zinc and aluminium – Two-year subjection to influence of Aspergillus niger [J]. Corros. Sci., 2007, 49: 4098
doi: 10.1016/j.corsci.2007.05.004
46 Dai X Y, Wang H, Ju L K, et al. Corrosion of aluminum alloy 2024 caused by Aspergillus niger [J]. Int. Biodeterior. Biodegrad., 2016, 115: 1
doi: 10.1016/j.ibiod.2016.07.009
47 Qu Q, Wang L, Li L, et al. Effect of the fungus, Aspergillus niger, on the corrosion behaviour of AZ31B magnesium alloy in artificial seawater[J]. Corros. Sci., 2015, 98: 249
doi: 10.1016/j.corsci.2015.05.038
48 Jirón-Lazos U, Corvo F, De la Rosa S C, et al. Localized corrosion of aluminum alloy 6061 in the presence of Aspergillus niger [J]. Int. Biodeterior. Biodegrad., 2018, 133: 17
doi: 10.1016/j.ibiod.2018.05.007
49 Bai Z H, Xiao K, Chen L H, et al. Corrosion inhibition of titanium by Paecilomyces variotii and Aspergillus niger in an aqueous environment[J]. Int. J. Electrochem. Sci., 2018, 13: 2033
doi: 10.20964/2018.02.70
50 Yu D, Kurola J M, Lähde K, et al. Biogas production and methanogenic archaeal community in mesophilic and thermophilic anaerobic co-digestion processes[J]. J. Environ. Manage., 2014, 143: 54
doi: 10.1016/j.jenvman.2014.04.025 pmid: 24837280
51 Woese C R, Kandler O, Wheelis M L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya[J]. Proc. Natl. Acad. Sci. USA, 1990, 87: 4576
doi: 10.1073/pnas.87.12.4576 pmid: 2112744
52 Leininger S, Urich T, Schloter M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils[J]. Nature, 2006, 442: 806
doi: 10.1038/nature04983
53 Usher K M, Kaksonen A H, MacLeod I D. Marine rust tubercles harbour iron corroding archaea and sulphate reducing bacteria[J]. Corros. Sci., 2014, 83: 189
doi: 10.1016/j.corsci.2014.02.014
54 Chen S Q, Deng H, Li J R, et al. Study of E690 steel corrosion in seawater containing methanogenic archaea[J]. J. Mater. Eng. Perform., 2022, 31: 9129
doi: 10.1007/s11665-022-06919-w
55 Qian H C, Ma L W, Zhang D W, et al. Microbiologically influenced corrosion of 304 stainless steel by halophilic archaea Natronorubrum tibetense [J]. J. Mater. Sci. Technol., 2020, 46: 12
doi: 10.1016/j.jmst.2019.04.047
56 Qian H C, Zhang J T, Cui T Y, et al. Influence of NaCl concentration on microbiologically influenced corrosion of carbon steel by halophilic archaeon Natronorubrum tibetense [J]. Bioelectrochemistry, 2021, 140: 107746
doi: 10.1016/j.bioelechem.2021.107746
57 Suarez E M, Lepkova K, Kinsella B, et al. Aggressive corrosion of steel by a thermophilic microbial consortium in the presence and absence of sand[J]. Int. Biodeterior. Biodegrad., 2019, 137: 137
doi: 10.1016/j.ibiod.2018.12.003
58 Qian H C, Liu S Y, Wang P, et al. Investigation of microbiologically influenced corrosion of 304 stainless steel by aerobic thermoacidophilic archaeon Metallosphaera cuprina [J]. Bioelectrochemistry, 2020, 136: 107635
doi: 10.1016/j.bioelechem.2020.107635
59 Vandana, Monika P, Surajit D. Bacterial extracellular polymeric substances: Biosynthesis and interaction with environmental pollutants[J]. Chemosphere, 2023, 332: 138876
doi: 10.1016/j.chemosphere.2023.138876
60 Yoon H S, Muller K M, Sheath R G, et al. Defining the major lineages of red algae (Rhodophyta)[J]. J. Phycol., 2006, 42: 482
doi: 10.1111/jpy.2006.42.issue-2
61 De Muynck W, Ramirez A M, De Belie N, et al. Evaluation of strategies to prevent algal fouling on white architectural and cellular concrete[J]. Int. Biodeterior. Biodegrad., 2009, 63: 679
doi: 10.1016/j.ibiod.2009.04.007
62 Li L X, Liu W M, Liang T J, et al. The adsorption mechanisms of algae-bacteria symbiotic system and its fast formation process[J]. Bioresour. Technol., 2020, 315: 123854
doi: 10.1016/j.biortech.2020.123854
63 Mieszkin S, Callow M E, Callow J A. Interactions between microbial biofilms and marine fouling algae: a mini review[J]. Biofouling, 2013, 29: 1097
doi: 10.1080/08927014.2013.828712 pmid: 24047430
64 Selvarajan R, Sibanda T, Venkatachalam S, et al. Distribution, interaction and functional profiles of epiphytic bacterial communities from the rocky intertidal seaweeds, South Africa[J]. Sci. Rep., 2019, 9: 19835
doi: 10.1038/s41598-019-56269-2 pmid: 31882618
65 Kalnaowakul P, Xu D K, Rodchanarowan A. Accelerated corrosion of 316L stainless steel caused by Shewanella algae biofilms[J]. ACS Appl. Bio. Mater., 2020, 3: 2185
doi: 10.1021/acsabm.0c00037 pmid: 35025270
66 Khadraoui A, Khelifa A, Hachama K, et al. Synergistic effect of potassium iodide in controlling the corrosion of steel in acid medium by Mentha pulegium extract[J]. Res. Chem. Intermed., 2015, 41: 7973
doi: 10.1007/s11164-014-1870-8
67 Zheng D D, Wang G J. Preparation of algae extract as green corrosion inhibitor for Q235 steel in chloride ion solutions[J]. Int. J. Electrochem. Sci., 2021, 16: 210734
doi: 10.20964/2021.07.64
68 Khoukhi F, Kebbouche-Gana S, Djelali N E, et al. Efficiency evaluation of anti-corrosion treatment of carbon steel by extracts of red algae collected from mediterranean coast[J]. Rev. Chim., 2021, 72: 59
doi: 10.37358/RC.72.21.2
69 Benabbouha T, Nmila R, Siniti M, et al. The brown algae Cystoseira Baccata extract as a friendly corrosion inhibitor on carbon steel in acidic media[J]. SN Appl. Sci., 2020, 2: 662
doi: 10.1007/s42452-020-2492-y
70 Spavieri J, Allmendinger A, Kaiser M, et al. Antimycobacterial, antiprotozoal and cytotoxic potential of twenty-one brown algae (phaeophyceae) from British and Irish waters[J]. Phytother Res., 2010, 24: 1724
doi: 10.1002/ptr.3208 pmid: 20564461
71 Bakke R, Trulear M G, Robinson J A, et al. Activity of Pseudomonas aeruginosa in biofilms: steady state[J]. Biotechnol. Bioeng., 1984, 26: 1418
pmid: 18551671
72 Di Martino P. Extracellular polymeric substances, a key element in understanding biofilm phenotype[J]. AIMS Microbiol., 2018, 4: 274
doi: 10.3934/microbiol.2018.2.274 pmid: 31294215
73 Flemming H C, Wingender J, Griegbe T, et al. Physico-chemical properties of biofilms[M]. Amsterdam: Harwood Academic Publishers, 2000: 19
74 Nielsen P H, Jahn A, Palmgren R. Conceptual model for production and composition of exopolymers in biofilms[J]. Water Sci. Technol., 1997, 36: 11
doi: 10.2166/wst.1997.0002
75 Sheng G P, Yu H Q, Li X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review[J]. Biotechnol. Adv., 2010, 28: 882
doi: 10.1016/j.biotechadv.2010.08.001
76 Arcila J S, Buitrón G. Influence of solar irradiance levels on the formation of microalgae-bacteria aggregates for municipal wastewater treatment[J]. Algal Res., 2017, 27: 190
doi: 10.1016/j.algal.2017.09.011
77 Vu C H T, Chun S J, Seo S H, et al. Bacterial community enhances flocculation efficiency of Ettlia sp. by altering extracellular polymeric substances profile[J]. Bioresour. Technol., 2019, 281: 56
doi: 10.1016/j.biortech.2019.02.062
78 Jorand F, Zartarian F, Thomas F, et al. Chemical and structural (2D) linkage between bacteria within activated sludge flocs[J]. Water Res., 1995, 29: 1639
doi: 10.1016/0043-1354(94)00350-G
79 Poxon T L, Darby J L. Extracellular polyanions in digested sludge: measurement and relationship to sludge dewaterability[J]. Water Res., 1997, 31: 749
doi: 10.1016/S0043-1354(96)00319-3
80 Zhao L T, She Z L, Jin C J, et al. Characteristics of extracellular polymeric substances from sludge and biofilm in a simultaneous nitrification and denitrification system under high salinity stress[J]. Bioprocess. Biosyst. Eng., 2016, 39: 1375
doi: 10.1007/s00449-016-1613-x
81 Lin H J, Zhang M J, Wang F Y, et al. A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: characteristics, roles in membrane fouling and control strategies[J]. J. Membr. Sci., 2014, 460: 110
doi: 10.1016/j.memsci.2014.02.034
82 Simões M, Simões L C, Vieira M J. A review of current and emergent biofilm control strategies[J]. LWT-Food Sci. Technol., 2010, 43: 573
doi: 10.1016/j.lwt.2009.12.008
83 Xiao R, Zheng Y. Overview of microalgal extracellular polymeric substances (EPS) and their applications[J]. Biotechnol. Adv., 2016, 34: 1225
doi: S0734-9750(16)30105-7 pmid: 27576096
84 Fallahi A, Rezvani F, Asgharnejad H, et al. Interactions of microalgae-bacteria consortia for nutrient removal from wastewater: a review[J]. Chemosphere, 2021, 272: 129878
doi: 10.1016/j.chemosphere.2021.129878
85 Koo H, Yamada K M. Dynamic cell-matrix interactions modulate microbial biofilm and tissue 3D microenvironments[J]. Curr. Opin. Cell Biol., 2016, 42: 102
doi: S0955-0674(16)30091-6 pmid: 27257751
86 Flemming H C, Wingender J, Szewzyk U, et al. Biofilms: an emergent form of bacterial life[J]. Nat. Rev. Microbiol., 2016, 14: 563
doi: 10.1038/nrmicro.2016.94
87 Sepehri A, Sarrafzadeh M H. Effect of nitrifiers community on fouling mitigation and nitrification efficiency in a membrane bioreactor[J]. Chem. Eng. Process.-Process Intensif., 2018, 128: 10
doi: 10.1016/j.cep.2018.04.006
88 Liu Y Q, Liu Y, Tay J H. The effects of extracellular polymeric substances on the formation and stability of biogranules[J]. Appl. Microbiol. Biotechnol., 2004, 65: 143
89 Shukla A, Mehta K, Parmar J, et al. Depicting the exemplary knowledge of microbial exopolysaccharides in a nutshell[J]. Eur. Polym. J., 2019, 119: 298
doi: 10.1016/j.eurpolymj.2019.07.044
90 Barcelos M C S, Vespermann K A C, Pelissari F M, et al. Current status of biotechnological production and applications of microbial exopolysaccharides[J]. Crit. Rev. Food Sci. Nutr., 2020, 60: 1475
doi: 10.1080/10408398.2019.1575791 pmid: 30740985
91 Baruah R, Das D, Goyal A. Heteropolysaccharides from lactic acid bacteria: current trends and applications[J]. J. Prob. Health, 2016, 4: 1000141
92 Min W H, Fang X B, Wu T, et al. Characterization and antioxidant activity of an acidic exopolysaccharide from Lactobacillus plantarum JLAU103[J]. J. Biosci. Bioeng., 2019, 127: 758
doi: 10.1016/j.jbiosc.2018.12.004
93 Hu T, Cui Y H, Zhang Y S, et al. Genome analysis and physiological characterization of four Streptococcus thermophilus strains isolated from Chinese traditional fermented milk[J]. Front. Microbiol., 2020, 11: 184
doi: 10.3389/fmicb.2020.00184
94 Sutherland I W. Microbial polysaccharides from Gram-negative bacteria[J]. Int. Dairy J., 2001, 11: 663
doi: 10.1016/S0958-6946(01)00112-1
95 Marvasi M, Visscher P T, Martinez L C. Exopolymeric substances (EPS) from Bacillus subtilis: polymers and genes encoding their synthesis[J]. FEMS Microbiol. Lett., 2010, 313: 1
doi: 10.1111/fml.2010.313.issue-1
96 Flemming H C, Wingender J. The biofilm matrix[J]. Nat. Rev. Microbiol., 2010, 8: 623
doi: 10.1038/nrmicro2415
97 Nwodo U U, Green E, Okoh A I. Bacterial exopolysaccharides: functionality and prospects[J]. Int. J. Mol. Sci., 2012, 13: 14002
doi: 10.3390/ijms131114002 pmid: 23203046
98 Sutherland I W. Novel and established applications of microbial polysaccharides[J]. Trends Biotechnol., 1998, 16: 41
doi: 10.1016/S0167-7799(97)01139-6 pmid: 9470230
99 Rehm B H A. Alginate production: precursor biosynthesis, polymerization and secretion[A]. Rehm B H A. Alginates: Biology and Applications[M]. Berlin, Heidelberg: Springer, 2009: 55
100 Felt O, Einmahl S, Furrer P, et al. Polymeric Systems for Ophthalmic Drug Delivery[M]. Boca Raton: CRC Press, 2001: 391
101 Amado I R, Vázquez J A, Pastrana L, et al. Cheese whey: a cost-effective alternative for hyaluronic acid production by Streptococcus zooepidemicus[J]. Food Chem., 2016, 198: 54
doi: 10.1016/j.foodchem.2015.11.062 pmid: 26769504
102 Stevenson G, Andrianopoulos K, Hobbs M, et al. Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid[J]. J. Bacteriol., 1996, 178: 4885
pmid: 8759852
103 Singh R, Paul D, Jain R K. Biofilms: implications in bioremediation[J]. Trends Microbiol., 2006, 14: 389
pmid: 16857359
104 Schmid J, Meyer V, Sieber V. Scleroglucan: biosynthesis, production and application of a versatile hydrocolloid[J]. Appl. Microbiol. Biotechnol., 2011, 91: 937
doi: 10.1007/s00253-011-3438-5 pmid: 21732244
105 Pochanavanich P, Suntornsuk W. Fungal chitosan production and its characterization[J]. Lett. Appl. Microbiol., 2002, 35: 17
pmid: 12081543
106 Zhang Y F, Kong H L, Fang Y P, et al. Schizophyllan: a review on its structure, properties, bioactivities and recent developments[J]. Bioact. Carbohydr. Dietary Fibre, 2013, 1: 53
doi: 10.1016/j.bcdf.2013.01.002
107 Miranda C C B O, Dekker R F H, Serpeloni J M, et al. Anticlastogenic activity exhibited by botryosphaeran, a new exopolysaccharide produced by Botryosphaeria rhodina MAMB-05[J]. Int. J. Biol. Macromol., 2008, 42: 172
doi: 10.1016/j.ijbiomac.2007.10.010
108 More T T, Yadav J S S, Yan S, et al. Extracellular polymeric substances of bacteria and their potential environmental applications[J]. J. Environ. Manage., 2014, 144: 1
doi: 10.1016/j.jenvman.2014.05.010 pmid: 24907407
109 Ding Z J, Bourven I, Guibaud G, et al. Role of extracellular polymeric substances (EPS) production in bioaggregation: application to wastewater treatment[J]. Appl. Microbiol. Biotechnol., 2015, 99: 9883
doi: 10.1007/s00253-015-6964-8 pmid: 26381665
110 Wang J, Yu H Q. Biosynthesis of polyhydroxybutyrate (PHB) and extracellular polymeric substances (EPS) by Ralstonia eutropha ATCC 17699 in batch cultures[J]. Appl. Microbiol. Biotechnol., 2007, 75: 871
pmid: 17318537
111 Hug I, Feldman M F. Analogies and homologies in lipopolysaccharide and glycoprotein biosynthesis in bacteria[J]. Glycobiology, 2011, 21: 138
doi: 10.1093/glycob/cwq148 pmid: 20871101
112 Gonçalves A L, Ferreira C, Loureiro J A, et al. Surface physicochemical properties of selected single and mixed cultures of microalgae and cyanobacteria and their relationship with sedimentation kinetics[J]. Bioresour. Bioprocess., 2015, 2: 21
doi: 10.1186/s40643-015-0051-y
113 Vlassov V V, Laktionov P P, Rykova E Y. Extracellular nucleic acids[J]. BioEssays, 2007, 29: 654
pmid: 17563084
114 Speziale P, Pietrocola G, Foster T J, et al. Protein-based biofilm matrices in Staphylococci[J]. Front. Cell. Infect. Microbiol., 2014, 4: 171
115 Peña-Méndez E M, Havel J, Patočka J. Humic substances-compounds of still unknown structure: applications in agriculture, industry, environment, and biomedicine[J]. J. Appl. Biomed., 2005, 3: 13
doi: 10.32725/jab.2005.002
116 Moura M N, Martín M J, Burguillo F J. A comparative study of the adsorption of humic acid, fulvic acid and phenol onto Bacillus subtilis and activated sludge[J]. J. Hazard. Mater., 2007, 149: 42
doi: 10.1016/j.jhazmat.2007.02.074
117 Buffle J, Staub C. Measurement of complexation properties of metal ions in natural conditions by ultrafiltration: measurement of equilibrium constants for complexation of zinc by synthetic and natural ligands[J]. Anal. Chem., 1984, 56: 2837
doi: 10.1021/ac00278a047
118 Soberón-Chávez G, Lépine F, Déziel E. Production of rhamnolipids by Pseudomonas aeruginosa [J]. Appl. Microbiol. Biotechnol., 2005, 68: 718
pmid: 16160828
119 Salehizadeh H, Shojaosadati S A. Extracellular biopolymeric flocculants: recent trends and biotechnological importance[J]. Biotechnol. Adv., 2001, 19: 371
doi: 10.1016/s0734-9750(01)00071-4 pmid: 14538073
120 Comte S, Guibaud G, Baudu M. Biosorption properties of extracellular polymeric substances (EPS) resulting from activated sludge according to their type: soluble or bound[J]. Process Biochem., 2006, 41: 815
doi: 10.1016/j.procbio.2005.10.014
121 Lurie M, Rebhun M. Effect of properties of polyelectrolytes on their interaction with particulates and soluble organics[J]. Water Sci. Technol., 1997, 36: 93
122 Chen W P, Song J H, Jiang S J, et al. Influence of extracellular polymeric substances from activated sludge on the aggregation kinetics of silver and silver sulfide nanoparticles[J]. Front. Environ. Sci. Eng., 2021, 16: 16
doi: 10.1007/s11783-021-1450-2
123 Solís M, Solís A, Inés Pérez H, et al. Microbial decolouration of azo dyes: a review[J]. Process Biochem., 2012, 47: 1723
doi: 10.1016/j.procbio.2012.08.014
124 Comte S, Guibaud G, Baudu M. Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and EPS complexation properties: Part I. Comparison of the efficiency of eight EPS extraction methods[J]. Enzyme Microb. Technol., 2006, 38: 237
doi: 10.1016/j.enzmictec.2005.06.016
125 Comte S, Guibaud G, Baudu M. Effect of extraction method on EPS from activated sludge: an HPSEC investigation[J]. J. Hazard. Mater., 2007, 140: 129
pmid: 16879910
126 Pan X L, Wang J L, Zhang D Y, et al. Zn2+ sorption and mechanism by EPS of mixed SRB population[J]. Res. Environ. Sci., 2005, 18(6): 53
潘响亮, 王建龙, 张道勇 等. 硫酸盐还原菌混合菌群胞外聚合物对Zn2+的吸附和机理[J]. 环境科学研究, 2005, 18(6): 53
127 Li W W, Yu H Q. Insight into the roles of microbial extracellular polymer substances in metal biosorption[J]. Bioresour. Technol., 2014, 160: 15
doi: 10.1016/j.biortech.2013.11.074
128 Yan S J, Cai Y G, Li H Q, et al. Enhancement of cadmium adsorption by EPS-montmorillonite composites[J]. Environ. Pollut., 2019, 252: 1509
doi: S0269-7491(19)31480-0 pmid: 31272010
129 Neyens E, Baeyens J, Dewil R, et al. Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering[J]. J. Hazard. Mater., 2004, 106: 83
doi: 10.1016/j.jhazmat.2003.11.014 pmid: 15177096
130 Xiao Y, Zhao F. Electrochemical roles of extracellular polymeric substances in biofilms[J]. Curr. Opin. Electrochem., 2017, 4: 206
131 Zheng Y, Quan X C, Zhuo M H, et al. In-situ formation and self-immobilization of biogenic Fe oxides in anaerobic granular sludge for enhanced performance of acidogenesis and methanogenesis[J]. Sci. Total Environ., 2021, 787: 147400
doi: 10.1016/j.scitotenv.2021.147400
132 Zhuravel R, Huang H C, Polycarpou G, et al. Backbone charge transport in double-stranded DNA[J]. Nat. Nanotechnol., 2020, 15: 836
doi: 10.1038/s41565-020-0741-2
133 Saunders S H, Tse E C M, Yates M D, et al. Extracellular DNA promotes efficient extracellular electron transfer by pyocyanin in Pseudomonas aeruginosa biofilms[J]. Cell, 2020, 182: 919
doi: S0092-8674(20)30871-0 pmid: 32763156
134 Wang X B, Chen T T, Gao C Y, et al. Use of extracellular polymeric substances as natural redox mediators to enhance denitrification performance by accelerating electron transfer and carbon source metabolism[J]. Bioresour. Technol., 2022, 345: 126522
doi: 10.1016/j.biortech.2021.126522
135 Park J K, Lee J W, Jung J Y. Cadmium uptake capacity of two strains of Saccharomyces cerevisiae cells[J]. Enzyme Microb. Technol., 2003, 33: 371
doi: 10.1016/S0141-0229(03)00133-9
136 Chen S Q, Zhang D. Study of corrosion behavior of copper in 3.5 wt.% NaCl solution containing extracellular polymeric substances of an aerotolerant sulphate-reducing bacteria[J]. Corros. Sci., 2018, 136: 275
doi: 10.1016/j.corsci.2018.03.017
137 Zhu J F, Chen S C, Sun L Q, et al. LincRNA-EPS impairs host antiviral immunity by antagonizing viral RNA-PKR interaction[J]. EMBO Rep., 2022, 23: e53937
doi: 10.15252/embr.202153937
138 Beech I B, Zinkevich V, Tapper R, et al. Direct involvement of an extracellular complex produced by a marine sulfate- reducing bacterium in deterioration of steel[J]. Geomicrobiol. J., 1998, 15: 121
doi: 10.1080/01490459809378069
139 Zhang Y X, Liu H X, Jin Z Y, et al. Fungi corrosion of high-strength aluminum alloys with different microstructures caused by marine Aspergillus terreus under seawater drop[J]. Corros. Sci., 2023, 212: 110960
doi: 10.1016/j.corsci.2023.110960
140 Cheng S, Lau K T, Chen S G, et al. Microscopical observation of the marine bacterium Vibrio natriegeus growth on metallic corrosion[J]. Mater. Manuf. Processes, 2010, 25: 293
doi: 10.1080/10426911003747642
141 Ding Q M, Liu R Y, Cui Y Y, et al. Influence of electron mediator on microbiologically influenced corrosion behavior of 2024 aluminum alloy[J]. Corrosion, 2023, 79: 146
doi: 10.5006/4111
142 Khan M S, Yang C G, Zhao Y, et al. An induced corrosion inhibition of X80 steel by using marine bacterium Marinobacter salsuginis [J]. Colloids Surf., 2020, 189B: 110858
143 Finkenstadt V L, Côté G L, Willett J L. Corrosion protection of low-carbon steel using exopolysaccharide coatings from Leuconostoc mesenteroides [J]. Biotechnol. Lett., 2011, 33: 1093
doi: 10.1007/s10529-011-0539-2 pmid: 21290167
144 Pedersen A, Hermansson M. Bacterial corrosion of iron in seawater in situ, and in aerobic and anaerobic model systems[J]. FEMS Microbiol. Lett., 1991, 86: 139
doi: 10.1111/fml.1991.86.issue-2
145 Dubiel M, Hsu C H, Chien C C, et al. Microbial iron respiration can protect steel from corrosion[J]. Appl. Environ. Microbiol., 2002, 68: 1440
doi: 10.1128/AEM.68.3.1440-1445.2002
146 Bautista B E T, Wikieł A J, Datsenko I, et al. Influence of extracellular polymeric substances (EPS) from Pseudomonas NCIMB 2021 on the corrosion behaviour of 70Cu-30Ni alloy in seawater[J]. J. Electroanal. Chem., 2015, 737: 184
doi: 10.1016/j.jelechem.2014.09.024
147 Li S, Qu Q, Li L, et al. Bacillus cereus s-EPS as a dual bio-functional corrosion and scale inhibitor in artificial seawater[J]. Water Res., 2019, 166
148 Pan X L, Wang J L, Zhang D Y. Copper(Ⅱ) sorption by EPS of mixed SRB population and mechanism[J]. Technol. Water Treat., 2005, 31(9): 25
潘响亮, 王建龙, 张道勇. 硫酸盐还原菌混合菌群胞外聚合物对Cu2+的吸附和机理[J]. 水处理研究, 2005, 31(9): 25
149 Mishra S P. Removal of heavy metal ions from copper and zinc industrial effluents using Penicillium sp[J]. Int. J. Environ. Sci. Technol., 2022, 19(9): 9107
doi: 10.1007/s13762-021-03607-5
150 Dong Y H, Guo N, Liu T, et al. Effect of extracellular polymeric substances isolated from Vibrio natriegens on corrosion of carbon steel in seawater[J]. Corros. Eng. Sci. Technol., 2016, 51: 455
doi: 10.1080/1478422X.2016.1139319
151 Szatmári D, Sárkány P, Kocsis B, et al. Intracellular ion concentrations and cation-dependent remodelling of bacterial MreB assemblies[J]. Sci. Rep., 2020, 10(1): 12002
doi: 10.1038/s41598-020-68960-w pmid: 32686735
152 Anjana K, Kaushik A, Kiran B, et al. Biosorption of Cr(VI) by immobilized biomass of two indigenous strains of cyanobacteria isolated from metal contaminated soil[J]. J. Hazard. Mater., 2007, 148: 383
pmid: 17403568
153 Sulaymon A H, Mohammed A A, Al-Musawi T J. Competitive biosorption of lead, cadmium, copper, and arsenic ions using algae[J]. Environ. Sci. Pollut. Res., 2013, 20: 3011
doi: 10.1007/s11356-012-1208-2
154 Matheickal J T, Yu Q, Feltham J. Cu(II) binding by E. radiata biomaterial[J]. Environ. Technol., 1997, 18: 25
doi: 10.1080/09593331808616509
155 Cao B C, Zhao Z P, Peng L L, et al. Silver nanoparticles boost charge-extraction efficiency in Shewanella microbial fuel cells[J]. Science, 2021, 373: 1336
doi: 10.1126/science.abf3427
156 Boggs M A, Jiao Y Q, Dai Z R, et al. Interactions of plutonium with Pseudomonas sp. strain EPS-1W and its extracellular polymeric substances[J]. Appl. Environ. Microbiol., 2016, 82: 7093
doi: 10.1128/AEM.02572-16
157 Lai C Y, Dong Q Y, Chen J X, et al. Role of extracellular polymeric substances in a methane based membrane biofilm reactor reducing vanadate[J]. Environ. Sci. Technol., 2018, 52: 10680
doi: 10.1021/acs.est.8b02374
158 Naveed S, Li C H, Lu X D, et al. Microalgal extracellular polymeric substances and their interactions with metal(loid)s: a review[J]. Crit. Rev. Environ. Sci. Technol., 2019, 49: 1769
doi: 10.1080/10643389.2019.1583052
159 Ozturk S, Aslim B, Suludere Z. Cadmium(II) sequestration characteristics by two isolates of Synechocystis sp. in terms of exopolysaccharide (EPS) production and monomer composition[J]. Bioresour. Technol., 2010, 101: 9742
doi: 10.1016/j.biortech.2010.07.105
160 Zhang Z L, Cai R H, Zhang W H, et al. A novel exopolysaccharide with metal adsorption capacity produced by a marine bacterium Alteromonas sp. JL2810[J]. Mar. Drugs, 2017, 15: 175
doi: 10.3390/md15060175
161 Xie Q. The complexation of extracellular polymeric substances with Cadmium in alleviating the toxicity on Chlorella vulgaris [D]. Xiangtan: Xiangtan University, 2019
谢琪婷. 小球藻胞外聚合物与镉的络合作用对镉毒性效应的缓解[D]. 湘潭: 湘潭大学, 2019
[1] PEI Yingying, GUAN Fang, DONG Xucheng, ZHANG Ruiyong, DUAN Jizhou, HOU Baorong. Effect of Desulfovibrio Bizertensis SY-1 on Corrosive Behavior of Metal Materials Under Cathodic Polarization[J]. 中国腐蚀与防护学报, 2024, 44(2): 345-354.
[2] GAO Qiuying, ZENG Wenguang, WANG Heng, LIU Yuancong, HU Junying. Effect of Fluid Scouring on Sulfate Reducting Bacteria Induced Corrosion of Pipeline Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1087-1093.
[3] WU Jiajia, XU Ming, WANG Peng, ZHANG Dun. Impact of Nitrate Addition on EH40 Steel Corrosion in Natural Seawater[J]. 中国腐蚀与防护学报, 2023, 43(4): 765-772.
[4] XU Ping, ZHAO Meihui, BAI Pengkai. Effect of Hydroxyethylidene Diphosphonic Acid on Iron Bacteria Induced Corrosion of Carbon Steel in Circulating Cooling Water[J]. 中国腐蚀与防护学报, 2022, 42(6): 988-994.
[5] MA Kaijun, WANG Mengmeng, SHI Zhenlong, CHEN Changfeng, JIA Xiaolan. Influence of Temperature on Microbial Induced Corrosion of Tank Bottom for Crude Oil Storage[J]. 中国腐蚀与防护学报, 2022, 42(6): 1051-1057.
[6] GUO Na, MAO Xiaomin, HUI Xinrui, GUO Zhangwei, LIU Tao. Corrosion Behavior of 316L Stainless Steel in Media Containing Pyomelanin Secreted by Pseudoalteromonas lipolytica[J]. 中国腐蚀与防护学报, 2022, 42(5): 743-751.
[7] LI Zhenxin, LV Meiying, DU Min. Effect of Combined Potential Polarization on Corrosion of X65 Steel in Seawater Inoculated with Iron Oxiding Bacteria[J]. 中国腐蚀与防护学报, 2022, 42(2): 211-217.
[8] ZHU Hailin, LU Xiaomeng, LI Xiaofen, WANG Junxia, LIU Jianhua, FENG Li, MA Xuemei, HU Zhiyong. Synthesis, Corrosion Inhibition and Bactericidal Performance of an Ammonium Salt Surfactant Containing Thiadiazole[J]. 中国腐蚀与防护学报, 2022, 42(1): 51-59.
[9] HE Yongjun, ZHANG Tiansui, WANG Haitao, ZHANG Fei, LI Guangfang, LIU Hongfang. Research Progress of Biocides for Microbiologically Influenced Corrosion[J]. 中国腐蚀与防护学报, 2021, 41(6): 748-756.
[10] ZHANG Fei, WANG Haitao, HE Yongjun, ZHANG Tiansui, LIU Hongfang. Case Analysis of Microbial Corrosion in Product Oil Pipeline[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
[11] LV Meiying, LI Zhenxin, DU Min, WAN Zixuan. Effect of Culture Medium on Microbiologically Influenced Corrosion[J]. 中国腐蚀与防护学报, 2021, 41(6): 757-764.
[12] LI Guangquan, LI Guangfang, WANG Junqiang, ZHANG Tiansui, ZHANG Fei, JIANG Ximin, LIU Hongfang. Microbiologically Influenced Corrosion Mechanism and Protection of Offshore Pipelines[J]. 中国腐蚀与防护学报, 2021, 41(4): 429-438.
[13] MA Gang, GU Yanhong, ZHAO Jie. Research Progress on Sulfate-reducing Bacteria Induced Corrosion of Steels[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
[14] HE Jing, YANG Chuntian, LI Zhong. Research Progress of Microbiologically Influenced Corrosion and Protection in Building Industry[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[15] WANG Kuntai, CHEN Fu, LI Huan, LUO Mina, HE Jie, LIAO Zihan. Corrosion Behavior of L245 Pipeline Steel in Shale Gas Fracturing Produced Water Containing Iron Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
No Suggested Reading articles found!