Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (2): 345-354    DOI: 10.11902/1005.4537.2023.074
Current Issue | Archive | Adv Search |
Effect of Desulfovibrio Bizertensis SY-1 on Corrosive Behavior of Metal Materials Under Cathodic Polarization
PEI Yingying1,2, GUAN Fang1,3(), DONG Xucheng1,2, ZHANG Ruiyong1, DUAN Jizhou1(), HOU Baorong1
1.Key laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Beijing 266071, China
2.University of Chinese Academy of Science, Beijing 100049, China
3.Nantong Zhongke Marine Science and Technology R& D Center, Nantong 226333, China
Cite this article: 

PEI Yingying, GUAN Fang, DONG Xucheng, ZHANG Ruiyong, DUAN Jizhou, HOU Baorong. Effect of Desulfovibrio Bizertensis SY-1 on Corrosive Behavior of Metal Materials Under Cathodic Polarization. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 345-354.

Download:  HTML  PDF(17133KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of sulfate-reducing bacteria (SRB) strain Desulfovibrio bizertensis SY-1, which isolated from rust scales on steels formed in the South China Sea, on the corrosion behavior of X70 pipeline steel was investigated at different polarized potentials of -0.85 and -1.05 V vs. SCE. The results showed that neither of the planktonic cell growth or the attached cells could not be effectively inhibited at the -0.85 V vs. SCE cathodal polarization potential. The Raman analysis showed that the corrosion product of mackinawite and goethite were both detected by this applied polarization potential. Under the applied polarization potential of -1.05 V vs. SCE, the growth and metabolic process of planktonic D. bizertensis SY-1 cells could be effectively inhibited, and the corrosion products were mainly magnetite. The mass loss data also showed that the mass loss of coupons at the polarization potential of -1.05 V vs. SCE was basically the same as that in the sterile condition, and the maximum pitting depth at this potential was reduced by 75% compared with those in non-polarized condition. The results provide a reference for the selection of cathodic protection potential and the study on the interaction between microorganisms and polarization potential in the environment containing D. bizertensis SY-1.

Key words:  sulfate-reducing bacteria      cathodic polarization      X70 pipeline steel      microbiologically influenced corrosion     
Received:  15 March 2023      32134.14.1005.4537.2023.074
ZTFLH:  TG174.3  
Fund: National Natural Science Foundation of China(42076044);Basic Research General Project of Nantong(JC22022104)
Corresponding Authors:  GUAN Fang, E-mail: guanfang@qdio.ac.cn;
DUAN Jizhou, E-mail: duanjz@qdio.ac.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.074     OR     https://www.jcscp.org/EN/Y2024/V44/I2/345

Fig.1  I-t plot (a), planktonic cell count (b), and the trend of solution lactate (c) and acetate (d) of X70 steel with different cathode potentials applied in SRB culture medium
Fig.2  Optical morphologies of X70 coupons in the SRB culture medium at OCP (a), -0.85 V (b), and -1.05 V (c) potentials after the 10 d incubation
Fig.3  Fluorescence staining photos of attached cells on the surface of X70 steel coupons in the SRB culture medium at OCP (a), -0.85 V (b), and -1.05 V (c) potentials after the 10 d incubation
Fig.4  SEM images of X70 coupons in sterile (a, b) and SRB culture medium at OCP (c, d), -0.85 V (e, f), and -1.05 V (g, h) potentials after the 10 d incubation
Fig.5  TEM images of X70 coupons in the SRB culture medium at OCP (a), -0.85 V (b, c), and -1.05 V (d) potentials after 10 d incubation
Fig.6  Raman analysis of X70 coupons in sterile (a) and SRB culture medium at OCP (b), -0.85 V (c), and -1.05 V (d) potentials after 10 d incubation
Fig.7  Mass loss of X70 coupons in sterile and SRB culture mediums with different polarization potential after the 10 d incubation
Fig.8  Maximum pitting depth of X70 coupons in sterile (a) and SRB culture medium at OCP (b), -0.85 V (c), and -1.05 V (d) potentials after 10 d incubation
1 Ma Y, Zhang Y M, Zhang R Y, et al. Microbiologically influenced corrosion of marine steels within the interaction between steel and biofilms: a brief view[J]. Appl. Microbiol. Biotechnol., 2020, 104: 515
doi: 10.1007/s00253-019-10184-8 pmid: 31807887
2 Li Y F, Ning C Y. Latest research progress of marine microbiological corrosion and bio-fouling, and new approaches of marine anti-corrosion and anti-fouling[J]. Bioact. Mater., 2019, 4: 189
doi: 10.1016/j.bioactmat.2019.04.003 pmid: 31192994
3 Chen X, Li S B, Zheng Z S, et al. Microbial corrosion behavior of X70 pipeline steel in an artificial solution for simulation of soil corrosivity at daqing Area[J]. J. Chin. Soc. Corros. Prot., 2020, 40: 175
陈 旭, 李帅兵, 郑忠硕 等. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40: 175
4 Zhang Y M, Zhai X F, Guan F, et al. Microbiologically influenced corrosion of steel in coastal surface seawater contaminated by crude oil[J]. npj Mater. Degrad., 2022, 6: 35
doi: 10.1038/s41529-022-00242-4
5 Zhang F, Wang H T, Hei Y J, et al. Case analysis of microbial corrosion in product oil pipeline[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 795
张 斐, 王海涛, 何勇君 等. 成品油输送管道微生物腐蚀案例分析[J]. 中国腐蚀与防护学报, 2021, 41: 795
6 Procópio L. The role of biofilms in the corrosion of steel in marine environments[J]. World J. Microbiol. Biotechnol., 2019, 35: 73
doi: 10.1007/s11274-019-2647-4
7 Tuck B, Watkin E, Somers A, et al. A critical review of marine biofilms on metallic materials[J]. npj Mater. Degrad., 2022, 6: 25
doi: 10.1038/s41529-022-00234-4
8 Ma G, Gu Y H, Zhao J. Research progress on sulfate-reducing bacteria induced corrosion of steels[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 289
马 刚, 顾艳红, 赵 杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展[J]. 中国腐蚀与防护学报, 2021, 41: 289
9 Li Z X, Lv M Y, Du M. Effect of combined potential polarization on corrosion of X65 steel in seawater inoculated with iron oxiding bacteria[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 211
李振欣, 吕美英, 杜 敏. 海水环境中组合电位极化对铁氧化菌腐蚀的影响[J]. 中国腐蚀与防护学报, 2022, 42: 211
doi: 10.11902/1005.4537.2021.106
10 Liu B, Fan E D, Jia J H, et al. Corrosion mechanism of nitrate reducing bacteria on X80 steel correlated to its intermediate metabolite nitrite[J]. Constr. Build. Mater., 2021, 303: 124454
doi: 10.1016/j.conbuildmat.2021.124454
11 Dong Y Q, Jiang B T, Xu D K, et al. Severe microbiologically influenced corrosion of S32654 super austenitic stainless steel by acid producing bacterium Acidithiobacillus caldus SM-1[J]. Bioelectrochemistry, 2018, 123: 34
doi: 10.1016/j.bioelechem.2018.04.014
12 Dall’Agnol L T, Moura J J G. Sulphate-reducing bacteria (SRB) and biocorrosion[A]. LiengenT, FéronD, BasséguyR, et al. Understanding Biocorrosion[M]. Oxford: Elsevier, 2014: 77
13 Dinh H T, Kuever J, Mußmann M, et al. Iron corrosion by novel anaerobic microorganisms[J]. Nature, 2004, 427: 829
doi: 10.1038/nature02321
14 Duan J Z, Wu S R, Zhang X J, et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater[J]. Electrochim. Acta, 2008, 54: 22
doi: 10.1016/j.electacta.2008.04.085
15 Yu L, Duan J Z, Du X Q, et al. Accelerated anaerobic corrosion of electroactive sulfate-reducing bacteria by electrochemical impedance spectroscopy and chronoamperometry[J]. Electrochem. Commun., 2013, 26: 101
doi: 10.1016/j.elecom.2012.10.022
16 Yu L, Duan J Z, Zhao W, et al. Characteristics of hydrogen evolution and oxidation catalyzed by Desulfovibrio caledoniensis biofilm on pyrolytic graphite electrode[J]. Electrochim. Acta, 2011, 56: 9041
doi: 10.1016/j.electacta.2011.05.086
17 Li Y C, Xu D K, Chen C F, et al. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: a review[J]. J. Mater. Sci. Technol., 2018, 34: 1713
doi: 10.1016/j.jmst.2018.02.023
18 Dong X C, Guan F, Xu L T, et al. Progress on the corrosion mechanism of sulfate-reducing bacteria in marine environment on metal materials[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 1
董续成, 管 方, 徐利婷 等. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41: 1
doi: 10.11902/1005.4537.2019.241
19 Guan F, Zhai X F, Duan J Z, et al. Progress on influence of cathodic polarization on sulfate-reducing bacteria induced corrosion[J]. J. Chin. Soc. Corros. Prot., 2018, 38: 1
管 方, 翟晓凡, 段继周 等. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2018, 38: 1
20 Liduino V, Galvão M, Brasil S, et al. SRB-mediated corrosion of marine submerged AISI 1020 steel under impressed current cathodic protection[J]. Colloids Surf., 2021, 202B: 111701
21 McCully A L, Spormann A M. Direct cathodic electron uptake coupled to sulfate reduction by Desulfovibrio ferrophilus IS5 biofilms[J]. Environ. Microbiol., 2020, 22: 4794
doi: 10.1111/emi.v22.11
22 Lv M Y, Li X, Du M. The effect of cathodic polarization on the corrosion behavior of X65 steel in seawater containing sulfate‐reducing bacteria[J]. Mater. Corros., 2020, 71: 2038
23 Dong X C, Zhai X F, Zhang Y M, et al. Steel rust layers immersed in the south China sea with a highly corrosive Desulfovibrio strain[J]. npj Mater. Degrad., 2022, 6: 91
doi: 10.1038/s41529-022-00304-7
24 Clark M E, He Q, He Z, et al. Temporal transcriptomic analysis as Desulfovibrio vulgaris hildenborough transitions into stationary phase during electron donor depletion[J]. Appl. Environ. Microbiol., 2006, 72: 5578
doi: 10.1128/AEM.00284-06
25 Guan F, Zhai X F, Duan J Z, et al. Influence of sulfate-reducing bacteria on the corrosion behavior of high strength steel EQ70 under cathodic polarization[J]. PLoS One, 2016, 11: e0162315
doi: 10.1371/journal.pone.0162315
26 Jia R, Wang D, Jin P, et al. Effects of ferrous ion concentration on microbiologically influenced corrosion of carbon steel by sulfate reducing bacterium Desulfovibrio vulgaris [J]. Corros. Sci., 2019, 153: 127
doi: 10.1016/j.corsci.2019.03.038
27 Xu L T, Guan F, Ma Y, et al. Inadequate dosing of THPS treatment increases microbially influenced corrosion of pipeline steel by inducing biofilm growth of Desulfovibrio hontreensis SY-21[J]. Bioelectrochemistry, 2022, 145: 108048
doi: 10.1016/j.bioelechem.2021.108048
28 Morcillo M, Chico B, Alcántara J, et al. SEM/micro-Raman characterization of the morphologies of marine atmospheric corrosion products formed on mild steel[J]. J. Electrochem. Soc., 2016, 163: C426
doi: 10.1149/2.0411608jes
29 De Faria D L A, Silva S V, De Oliveira M T. Raman microspectroscopy of some iron oxides and oxyhydroxides[J]. J. Raman Spectrosc., 1997, 28: 873
doi: 10.1002/(ISSN)1097-4555
30 Refait P, Grolleau A M, Jeannin M, et al. Corrosion of carbon steel in marine environments: role of the corrosion product layer[J]. Corros. Mater. Degradat., 2020, 1: 198
31 Bourdoiseau J A, Jeannin M, Sabot R, et al. Characterisation of mackinawite by Raman spectroscopy: effects of crystallisation, drying and oxidation[J]. Corros. Sci., 2008, 50: 3247
doi: 10.1016/j.corsci.2008.08.041
32 Jeong H Y, Lee J H, Hayes K F. Characterization of synthetic nanocrystalline mackinawite: crystal structure, particle size, and specific surface area[J]. Geochim. Cosmochim. Acta, 2008, 72: 493
doi: 10.1016/j.gca.2007.11.008
33 Ohfuji H, Rickard D. High resolution transmission electron microscopic study of synthetic nanocrystalline mackinawite[J]. Earth Planet. Sci. Lett., 2006, 241: 227
doi: 10.1016/j.epsl.2005.10.006
34 Yang J L, Lu Y F, Guo Z H, et al. Corrosion behaviour of a quenched and partitioned medium carbon steel in 3.5 wt.% NaCl solution[J]. Corros. Sci., 2018, 130: 64
doi: 10.1016/j.corsci.2017.10.027
35 Chen Y J, Tang Q, Senko J M, et al. Long-term survival of Desulfovibrio vulgaris on carbon steel and associated pitting corrosion[J]. Corros. Sci., 2015, 90: 89
doi: 10.1016/j.corsci.2014.09.016
36 Wu T Q, Sun C, Xu J, et al. A study on bacteria-assisted cracking of X80 pipeline steel in soil environment[J]. Corros. Eng. Sci. Technol., 2018, 53: 265
doi: 10.1080/1478422X.2018.1456633
37 Gu T Y, Jia R, Unsal T, et al. Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria[J]. J. Mater. Sci. Technol., 2019, 35: 631
doi: 10.1016/j.jmst.2018.10.026
[1] KE Nan, NI Yingying, HE Jiaqi, LIU Haixian, JIN Zhengyu, LIU Hongwei. Research Progress of Metal Corrosion Caused by Extracellular Polymeric Substances of Microorganisms[J]. 中国腐蚀与防护学报, 2024, 44(2): 278-294.
[2] WU Jiajia, XU Ming, WANG Peng, ZHANG Dun. Impact of Nitrate Addition on EH40 Steel Corrosion in Natural Seawater[J]. 中国腐蚀与防护学报, 2023, 43(4): 765-772.
[3] LI Zhenxin, LV Meiying, DU Min. Effect of Combined Potential Polarization on Corrosion of X65 Steel in Seawater Inoculated with Iron Oxiding Bacteria[J]. 中国腐蚀与防护学报, 2022, 42(2): 211-217.
[4] ZHU Hailin, LU Xiaomeng, LI Xiaofen, WANG Junxia, LIU Jianhua, FENG Li, MA Xuemei, HU Zhiyong. Synthesis, Corrosion Inhibition and Bactericidal Performance of an Ammonium Salt Surfactant Containing Thiadiazole[J]. 中国腐蚀与防护学报, 2022, 42(1): 51-59.
[5] HE Yongjun, ZHANG Tiansui, WANG Haitao, ZHANG Fei, LI Guangfang, LIU Hongfang. Research Progress of Biocides for Microbiologically Influenced Corrosion[J]. 中国腐蚀与防护学报, 2021, 41(6): 748-756.
[6] ZHANG Fei, WANG Haitao, HE Yongjun, ZHANG Tiansui, LIU Hongfang. Case Analysis of Microbial Corrosion in Product Oil Pipeline[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
[7] LV Meiying, LI Zhenxin, DU Min, WAN Zixuan. Effect of Culture Medium on Microbiologically Influenced Corrosion[J]. 中国腐蚀与防护学报, 2021, 41(6): 757-764.
[8] LI Guangquan, LI Guangfang, WANG Junqiang, ZHANG Tiansui, ZHANG Fei, JIANG Ximin, LIU Hongfang. Microbiologically Influenced Corrosion Mechanism and Protection of Offshore Pipelines[J]. 中国腐蚀与防护学报, 2021, 41(4): 429-438.
[9] MA Gang, GU Yanhong, ZHAO Jie. Research Progress on Sulfate-reducing Bacteria Induced Corrosion of Steels[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
[10] HE Jing, YANG Chuntian, LI Zhong. Research Progress of Microbiologically Influenced Corrosion and Protection in Building Industry[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[11] MING Nanxi, WANG Qishan, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Temperature on Corrosion Behavior of X70 Steel in an Artificial CO2-containing Formation Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[12] WANG Kuntai, CHEN Fu, LI Huan, LUO Mina, HE Jie, LIAO Zihan. Corrosion Behavior of L245 Pipeline Steel in Shale Gas Fracturing Produced Water Containing Iron Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[13] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[14] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[15] WANG Yu, WU Jiajia, ZHANG Dun. Research Progress on Corrosion of Metal Materials Caused by Dissimilatory Iron-reducing Bacteria in Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
No Suggested Reading articles found!