Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (1): 51-59    DOI: 10.11902/1005.4537.2021.082
Current Issue | Archive | Adv Search |
Synthesis, Corrosion Inhibition and Bactericidal Performance of an Ammonium Salt Surfactant Containing Thiadiazole
ZHU Hailin(), LU Xiaomeng, LI Xiaofen, WANG Junxia, LIU Jianhua, FENG Li, MA Xuemei, HU Zhiyong
School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
Download:  HTML  PDF(4554KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

An ammonium salt surfactant containing thiadiazole (MTOTB) was synthesized as a novel inhibitor, aiming to combine the characteristics in corrosion inhibition and bactericidal property of heterocyclic compound and ammonium salt surfactant. The structure, surface activity and corrosion inhibition performance for carbon steel in simulated seawater with SRB of the prepared product were characterized by means of 1HNMR, ESI-MS, FT-IR, surface tension measurements, electrochemical measurements and SEM-EDS. The results showed that the critical micelle concentration was 0.11 mmol/L for MTOTB in the simulated seawater. The inhibition efficiency could reach 95.81% for carbon steel in the simulated seawater with SRB for 21 d through addition of 0.2 mmol/L MTOTB. The results of SEM-EDS and XPS showed that MTOTB could adsorb on the surface of carbon steel effectively, so that inhibit the microbial corrosion of carbon steel.

Key words:  ammonium salt surfactant      thiadiazole derivative      surface activity      intramolecular synergistic effect      electrochemical measurements      sulfate-reducing bacteria     
Received:  16 April 2021     
ZTFLH:  TG171  
Fund: National Natural Science Foundation of China(51701188);Science Foundation of Shanxi Province(201801D221088)
Corresponding Authors:  ZHU Hailin     E-mail:  zhuhailin@nuc.edu.cn
About author:  ZHU Hailin, E-mail: zhuhailin@nuc.edu.cn

Cite this article: 

ZHU Hailin, LU Xiaomeng, LI Xiaofen, WANG Junxia, LIU Jianhua, FENG Li, MA Xuemei, HU Zhiyong. Synthesis, Corrosion Inhibition and Bactericidal Performance of an Ammonium Salt Surfactant Containing Thiadiazole. Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 51-59.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.082     OR     https://www.jcscp.org/EN/Y2022/V42/I1/51

Fig.1  Synthesis of MTOTB
Fig.2  ESI-MS spectrum of MTOTB
Fig.3  1HNMR spectrum of MTOTB
Fig.4  FT-IR spectroscopy of MTOTB
Fig.5  γ-lgc curve of MTOTB in simulated seawater at 30 ℃
Fig.6  Growth curve of SRB in simulated seawater
Fig.7  Nyquist (a) and Bode (b) plots of carbon steel immersed at 30 ℃ for 21 d in simulated seawater containing SRB and the different concentrations of MTOTB
Fig.8  Equivalent circuit diagram of EIS
Inhibitorc / mMRs / Ω·cm2Cf / μF·cm-2n1Rf / Ω·cm2Cdl / μF·cm-2n2Rct / Ω·cm2Rp / Ω·cm2ηeis / %
SRB---5.054605.240.921.108264.370.93242.00242.80---
MTOTB0.014.77746.820.8560.904144.710.881728.001788.9086.43
0.15.2382.650.942.94313.920.793075.003077.9092.11
0.25.32120.801.002.40411.820.845792.005794.4095.81
0.51.39476.090.386.98533.810.864859.004865.9895.01
1.05.2473.120.952.80342.890.793296.003298.8092.64
Table 1  Fitting data of EIS
Fig.9  SEM surface images (a1~c1) and EDS analysis (a2~c2) of carbon steel before (a) and after immersion for 21 d in simulated seawater containing SRB (b) and SRB+0.1 mmol/L MTOTB (c)
Fig.10  High resolution XPS spectra of carbon steel samples immersed in different solutions for 21 d: (a) C 1s, (b) O 1s, (c) Fe 2P, (d) S 2p, (e) N 1s
Valence stateMediumBinding energy / eVProposed structureAtomic fraction / %Valence stateMediumBinding energy / eVProposed structureAtomic fraction / %
C 1sSRB284.77C—C30.23Fe 2pSRB710.40FeS13.74
286.21C—C, C=O711.40Fe2O3
288.00C=O712.28FePO4
MTOTB284.80C—C, C—H38.77713.01FeSO4
286.23C—C, C—H, C—N, C=O724.84Fe3O4
288.35C—N, C=OMTOTB710.86Fe9.68
O 1sSRB529.72Fe2O348.01713.62FeOOH
531.11C=O724.72Fe3O4
532.50Organic OS 2pSRB161.20FeS5
MTOTB529.58FeOOH46.25162.02FeS
531.08SO42-, CO32-163.30FeS2
532.95Organic O164.50Org-S
N 1sSRB399.87C=N3.01167.90SO42-
402.00C=NMTOTB163.9C=S1.16
MTOTB398.30C=N4.14168.54SO42-
399.72C-N, C=N, N-H
402.30C=N (thiadiazole ring)
Table 2  Fitting parameters of XPS spectra of carbon steel immersed in different solutions for 21 d
1 Hou B R. The Cost of Corrosion in China [M]. Beijing: Science Press, 2017
侯保荣. 中国腐蚀成本 [M]. 北京: 科学出版社, 2017
2 Dong X C, Guan F, Xu L T, et al. Progress on the corrosion mechanism of sulfate-reducing bacteria in marine environment on metal materials [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 1
董续成, 管方, 徐利婷等. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 1
3 Lv M Y, Li Z X, Du M, et al. Formation, function and evolution of biofilm in microbiologically influenced corrosion [J]. Surf. Technol., 2019, 48(11): 59
吕美英, 李振欣, 杜敏等. 微生物腐蚀中生物膜的生成、作用与演变 [J]. 表面技术, 2019, 48(11): 59
4 Singh A K, Quraishi M A. The effect of some bis-thiadiazole derivatives on the corrosion of mild steel in hydrochloric acid [J]. Corros. Sci., 2010, 52: 1373
5 Qafsaoui W, Et Taouil A, Kendig M W, et al. Corrosion protection of bronze using 2, 5-dimercapto-1, 3, 4-thiadiazole as organic inhibitor: spectroscopic and electrochemical investigations [J]. J. Appl. Electrochem., 2019, 49: 823
6 Yuan H Y, Dong X, Huang Y M, et al. Synthesis and antibiosis activity of some compounds with thiadiazol structure [J]. Chem. Res. Appl., 2019, 31: 1066
袁海燕, 董新, 黄燕敏等. 一些噻二唑衍生物的合成及抑菌活性研究 [J]. 化学研究与应用, 2019, 31: 1066
7 Kuperkar K, Modi J, Patel K. Surface-active properties and antimicrobial study of conventional cationic and synthesized symmetrical Gemini surfactants [J]. J. Surfactants Deterg., 2012, 15: 107
8 Zhu H L, Hu Z Y, Ma X M, et al. Synthesis, surface and antimicrobial activities of cationic gemini surfactants with semi-rigid spacers [J]. J. Surfactants Deterg., 2016, 19: 265
9 Zhu Y K, Free M L, Yi G S. The effects of surfactant concentration, adsorption, aggregation, and solution conditions on steel corrosion inhibition and associated modeling in aqueous media [J]. Corros. Sci., 2016, 102: 233
10 Zhao J M, Gu F, Zhao T, et al. Corrosion inhibition performance of imidazoline derivatives with different pedant chains under three flow rates in high-pressure CO2 environment [J]. Res. Chem. Int., 2016, 42: 5753
11 Aiad I A, Hafiz A A, El-Awady M Y, et al. Some imidazoline derivatives as corrosion inhibitors [J]. J. Surfactants Deterg., 2010, 13: 247
12 Okafor P C, Liu C B, Liu X, et al. Inhibition of CO2 corrosion of N80 carbon steel by carboxylic quaternary imidazoline and halide ions additives [J]. J. Appl. Electrochem., 2009, 39: 2535
13 Hu Z Y, Meng Y B, Ma X M, et al. Experimental and theoretical studies of benzothiazole derivatives as corrosion inhibitors for carbon steel in 1 M HCl [J]. Corros. Sci., 2016, 112: 563
14 Zhu H L, Li X F, Lu X M, et al. Intra-/inter-molecular synergistic inhibition effect of sulfonate surfactant and 2-benzothiazolethiol on carbon steel corrosion in 3.5% NaCl solution [J]. Corros. Sci., 2021, 182: 109291
15 Jia R, Tan J L, Jin P, et al. Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm [J]. Corros. Sci., 2018, 130: 1
16 Huang J Y. Synthesis of dodecane alkyl metronidazole bisquats and its speciality against microbe induced corrosion [D]. Wuhan: Huazhong University of Science and Technology, 2005
黄金营. 含咪唑杂环的长链烷基双季铵盐的合成及其特性研究 [D]. 武汉: 华中科技大学, 2005
17 Liu H W, Gu T Y, Zhang G A, et al. Corrosion of X80 pipeline steel under sulfate-reducing bacterium biofilms in simulated CO2-saturated oilfield produced water with carbon source starvation [J]. Corros. Sci., 2018, 136: 47
18 Zhu H L, Hu Z Y, Wang J L, et al. Synthesis of a series of hydroxy-sulfobetaine surfactant and their micelle formation behavior [J]. China Surfactants Deterg. Cosmet., 2012, 42: 405
朱海林, 胡志勇, 王建龙等. 系列羟基磺基甜菜碱表面活性剂的合成及胶束化行为研究 [J]. 日用化学工业, 2012, 42: 405
19 European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution [J]. Clin. Microbiol. Infect., 2003, 9: ix
20 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Examination of bacteria and algae in industrial circulating cooling water-Part 5: Examination of sulfate-reducing bacteria-MPN test [S]. Beijing: Standards Press of China, 2010
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 工业循环冷却水中菌藻的测定方法 第5部分:硫酸盐还原菌的测定 MPN法 [S]. 北京: 中国标准出版社, 2010
21 Qiang Y J, Li H, Lan X J. Self-assembling anchored film basing on two tetrazole derivatives for application to protect copper in sulfuric acid environment [J]. J. Mater. Sci. Technol., 2020, 52: 63
22 Rodríguez-Gómez F J, Valdelamar M P, Vazquez A E, et al. Mycophenolic acid as a corrosion inhibitor of carbon steel in 3%wt.NaCl solution. an experimental and theoretical study [J]. J. Mol. Struct., 2019, 1183: 168
23 Pakiet M, Kowalczyk I, Garcia R L, et al. Gemini surfactant as multifunctional corrosion and biocorrosion inhibitors for mild steel [J]. Bioelectrochemistry, 2019, 128: 252
24 Peng Y, Hughes A E, Deacon G B, et al. A study of rare-earth 3- (4-methylbenzoyl)-propanoate compounds as corrosion inhibitors for AS1020 mild steel in NaCl solutions [J]. Corros. Sci., 2018, 145: 199
25 Liu H W, Xu D K, Yang K, et al. Corrosion of antibacterial Cu-bearing 316L stainless steels in the presence of sulfate reducing bacteria [J]. Corros. Sci., 2018, 132: 46
26 Wang J L, Hou B S, Xiang J, et al. The performance and mechanism of bifunctional biocide sodium pyrithione against sulfate reducing bacteria in X80 carbon steel corrosion [J]. Corros. Sci., 2019, 150: 296
27 Chen J N. The study on microbiologically influenced corrosion behavior and mechanism of Hull structure material 907 steel in seawater [D]. Qingdao: University of Chinese Academy of Science (Institute of Oceanology, Chinese Academy of Sciences), 2019
陈菊娜. 船体结构材料907钢在海水中微生物腐蚀行为及机理研究 [D]. 青岛: 中国科学院大学 (中国科学院海洋研究所), 2019
28 Liu H W, Gu T Y, Zhang G A, et al. Corrosion inhibition of carbon steel in CO2-containing oilfield produced water in the presence of iron-oxidizing bacteria and inhibitors [J]. Corros. Sci., 2016, 105: 149
[1] ZHANG Fei, WANG Haitao, HE Yongjun, ZHANG Tiansui, LIU Hongfang. Case Analysis of Microbial Corrosion in Product Oil Pipeline[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
[2] MA Gang, GU Yanhong, ZHAO Jie. Research Progress on Sulfate-reducing Bacteria Induced Corrosion of Steels[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
[3] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] CHEN Xu, LI Shuaibing, ZHENG Zhongshuo, XIAO Jibo, MING Nanxi, HE Chuan. Microbial Corrosion Behavior of X70 Pipeline Steel in an Artificial Solution for Simulation of Soil Corrosivityat Daqing Area[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[5] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[6] QI Peng, WAN Yi, ZENG Yan, ZHENG Laibao, ZHANG Dun. Rapid Detection Methods for Sulfate-reducing Bacteria in Marine Environments[J]. 中国腐蚀与防护学报, 2019, 39(5): 387-394.
[7] Tangqing WU,Zhaofen ZHOU,Xinming WANG,Dechuang ZHANG,Fucheng YIN,Cheng SUN. Thermodynamic and Dynamic Analyses of Microbiologically Assisted Cracking[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[8] Xin LI,Xu CHEN,Wuqi SONG,Jiaxing YANG,Ming WU. Effect of pH Value on Microbial Corrosion Behavior of X70 Steel in a Sea Mud Extract Simulated Solution[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[9] LI Kejuan,ZHENG Bijuan,CHEN Bi,LIU Hongfang. Effect of Magnetic Field on Microbiologically-influenced Corrosion Behavior of Q235 Steel[J]. 中国腐蚀与防护学报, 2013, 33(6): 463-469.
[10] CHEN Juan1, LEI Yanhua1, GAO Guanhui1, KONG Moli1, YIN Yansheng2. CORROSION BEHAVIOR OF Cu-Ni-Sn ALLOY UNDER SULFATE-REDUCING BACTERIABIOFILM[J]. 中国腐蚀与防护学报, 2011, 31(3): 231-235.
[11] WANG Hongfen, WANG Zhiqi, HONG Haixia, CHEN Shougang,YIN Yansheng. CORROSION RESISTANCE BEHAVIOR OF CERIUM-DOPED TiO2 FILM IN THE PRESENCE OF MARINE BACTERIUM SULFATE-REDUCING BACTERIA[J]. 中国腐蚀与防护学报, 2010, 30(6): 481-486.
[12] WANG Lei, DONG Junhua, KE Wei. CORROSION BEHAVIOR OF MnCu COST-EFFECTIVE WEATHERING STEEL UNDER CYCLIC LOAD IN A WET/DRY CYCLIC CORROSION ENVIRONMENT[J]. 中国腐蚀与防护学报, 2010, 30(4): 257-261.
[13] LIU Hongfang LIU Tao. GROWTH CHARACTERISTICS OF THERMOPHILE SULFATE-REDUCING BACTERIA AND ITS EFFECT ON CARBON STEEL[J]. 中国腐蚀与防护学报, 2009, 29(2): 93-98.
[14] HUANG Yanliang ZHU Yongyan HUANG Sidi ZHANG Yangyang. HYDROGEN PERMEATION INVESTIGATION OF A MARINE STEEL IN THE SEA MUD WITH SULFATE-REDUCING BACTERIA[J]. 中国腐蚀与防护学报, 2008, 28(6期): 355-358.
[15] . The progress of Research Methods on Atmospheric Corrosion[J]. 中国腐蚀与防护学报, 2004, 24(4): 249-256 .
No Suggested Reading articles found!