|
|
Corrosion Behavior of L245 Pipeline Steel in Shale Gas Fracturing Produced Water Containing Iron Bacteria |
WANG Kuntai, CHEN Fu( ), LI Huan, LUO Mina, HE Jie, LIAO Zihan |
School of Chemical Engineering, Southwest University of Petroleum, Chengdu 610500, China |
|
|
Abstract To provide theoretical reference for the corrosion protection engineering of metallic facilities in the water treatment process of shale gas fracturing produced water, the corrosion behavior of L245 steel induced by iron bacteria (FB) in shale gas fracturing produced water was studied by means of immersion test with mass loss measurement, electrochemical test and SEM characterization. Results showed that both of the shale gas fracturing produced waters with and without iron bacteria could all cause corrosion of L245 steel, but mass loss analysis and polarization curve analysis proved that the presence of FB promotes the corrosion of L245 steel. Further, the electrochemical impedance fitting results showed that in the shale gas fracturing produced water without FB, the corrosion rate of L245 steel increased slowly in the first 5 d, and then rapidly decreased. Whereas, in the shale gas fracturing produced water containing FB, the corrosion rate of L245 steel first decreased untill 8 d and then increased rapidly. SEM analysis results showed that the formed corrosion product films are quite different in the shale gas fracturing produced waters with and without iron bacteria.
|
Received: 20 June 2020
|
|
Fund: Science & Technology Project of Sichuan(2019YJ0353) |
Corresponding Authors:
CHEN Fu
E-mail: chenfu@swpu.edu.cn
|
About author: CHEN Fu, E-mail: chenfu@swpu.edu.cn
|
1 |
Hatzenbuhler H, Centner T J. Regulation of water pollution from hydraulic fracturing in horizontally-drilled wells in the marcellus shale region, USA [J]. Water, 2012, 4: 983
|
2 |
Theodori G L, Luloff A E, Willits F K, et al. Hydraulic fracturing and the management, disposal, and reuse of frac flowback waters: Views from the public in the Marcellus Shale [J]. Energy Res. Soc. Sci., 2014, 2: 66
|
3 |
Wang D. Technical progress of shale gas produced water treatment [J]. Environ. Eng., 2016, 34(): 424
|
|
王丹. 页岩气采出水处理工艺技术研究进展 [J]. 环境工程, 2016, 34(): 424
|
4 |
Wang J, Yan Y L, Yang Z G. Corrosion protection technology in the treatment of fracturing flow-back fluid of shale gas [J]. Surf. Technol., 2016, 45(8): 63
|
|
王娟, 燕永利, 杨志刚. 页岩气压裂返排液处理过程中的腐蚀防护技术 [J]. 表面技术, 2016, 45(8): 63
|
5 |
Gordalla B C, Ewers U, Frimmel F H. Hydraulic fracturing: A toxicological threat for groundwater and drinking-water? [J]. Environ. Earth Sci., 2013, 70: 3875
|
6 |
Wang M C, Wang M, Zhang Y Z, et al. Study on feasible treatment technologies for shale gas produced wastewater [J]. Mod. Chem. Ind., 2019, 39(3): 198
|
|
王美城, 王敏, 张宇州等. 页岩气产出水的可行性处理工艺研究 [J]. 现代化工, 2019, 39(3): 198
|
7 |
Shu F C, Lai Y L, Zhang Y. Study on corrosion and protection of oil-field produced water [J]. Total Corros. Control, 2007, 21(5): 8
|
|
舒福昌, 赖燕玲, 张煜. 油田产出水的腐蚀及防护研究 [J]. 全面腐蚀控制, 2007, 21(5): 8
|
8 |
Li J D, Wang C D, Liu J, et al. Corrosion analysis, and use of an inhibitor in oil wells [J]. Res. Chem. Intermed., 2014, 40: 649
|
9 |
Shi X B, Yang C G, Yan W, et al. Microbiologically influenced corrosion of pipeline steels [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 9
|
|
史显波, 杨春光, 严伟等. 管线钢的微生物腐蚀 [J]. 中国腐蚀与防护学报, 2019, 39: 9
|
10 |
Yao Y, Zhang Q L, Qin F L, et al. Effect of iron bacteria on corrosion behavior of J55 steel [J]. Corros. Prot., 2016, 37: 206
|
|
姚蓉, 张秋利, 秦芳玲等. 铁细菌对J55钢腐蚀行为的影响 [J]. 腐蚀与防护, 2016, 37: 206
|
11 |
Zhang W Y. Advances in the study of microbiologically influenced corrosion in marine environment [J]. Total Corros. Control, 2017, 31(1): 8
|
|
张文毓. 海洋微生物腐蚀研究进展 [J]. 全面腐蚀控制, 2017, 31(1): 8
|
12 |
Zheng C B, Hu X H, Zhang J, et al. Effect of chlorella vulgaris on corrosion behavior of Q235 carbon steel in seawater [J]. Corros. Prot., 2018, 39: 247
|
|
郑传波, 胡秀华, 张杰等. 海水中小球藻对Q235碳钢腐蚀行为的影响 [J]. 腐蚀与防护, 2018, 39: 247
|
13 |
Li F X, Wang Z K, Liu H L, et al. Corrosion and sterilization of pipelines by bacteria [J]. Oil-Gasfield Surf. Eng., 2014, 33(9): 22
|
|
李凤霞, 王郑库, 刘虹利等. 细菌对管道的腐蚀及杀菌实验 [J]. 油气田地面工程, 2014, 33(9): 22
|
14 |
Xu W J, Sun C, Han E-H. Effects of SRB on corrosion of 1Cr13 stainless steel in sea mud [J]. J. Mater. Prot., 2002, 35(11): 3
|
|
徐文杰, 孙成, 韩恩厚. 海泥中硫酸盐还原菌对1Cr13不锈钢腐蚀的影响 [J]. 材料保护, 2002, 35(11): 3
|
15 |
Liu H W, Liu H F, Qin S, et al. Investigation of biomineralization induced by sulfate reducing bacteria in sewage gathering pipelines in oilfield [J]. Corros. Sci. Prot. Technol., 2015, 27: 7
|
|
刘宏伟, 刘宏芳, 秦双等. 集输管线硫酸盐还原菌诱导生物矿化作用调查 [J]. 腐蚀科学与防护技术, 2015, 27: 7
|
16 |
Liu L, Jing J Q, Xie J F, et al. Study on physiological and biochemical characteristics and corrosion behavior of sulfate reducing bacteria isolated from oil pipeline [J]. Cont. Chem. Ind., 2016, 45: 263
|
|
刘黎, 敬加强, 谢俊峰等. 一株分离自输油管线中的硫酸盐还原菌生理生化特性及腐蚀行为研究 [J]. 当代化工, 2016, 45: 263
|
17 |
Lv Y L, Liu H W, Xiong F P, et al. Corrosion behavior of X80 pipeline steel in oil-field produced water containing iron oxidizing bacteria [J]. Corros. Sci. Prot. Technol., 2017, 29: 343
|
|
吕亚林, 刘宏伟, 熊福平等. 铁氧化菌对X80管线钢腐蚀行为的影响 [J]. 腐蚀科学与防护技术, 2017, 29: 343
|
18 |
Starosvetsky D, Armon R, Yahalom J, et al. Pitting corrosion of carbon steel caused by iron bacteria [J]. Int. Biodeterior. Biodegrad., 2001, 47: 79
|
19 |
Duan Y, Li S M, Du J, et al. Corrosion behavior of Q235 steel in the presence of pseudomonas and iron bacteria [J]. Acta Phys.- Chim. Sin., 2010, 26: 3203
|
|
段冶, 李松梅, 杜娟等. Q235钢在假单胞菌和铁细菌混合作用下的腐蚀行为 [J]. 物理化学学报, 2010, 26: 3203
|
20 |
Yin B J, Zhao W Z, Shi J Q. Study on microbial corrosion of metals [J]. Sichuan Chem. Ind., 2004, 7(1): 30
|
|
尹宝俊, 赵文轸, 史交齐. 金属微生物腐蚀的研究 [J]. 四川化工, 2004, 7(1): 30
|
21 |
Tian F, Bai X Q, He X Y, et al. Research progress on microbiological induced corrosion of metallic materials under ocean environment [J]. Surf. Technol., 2018, 47(8): 182
|
|
田丰, 白秀琴, 贺小燕等. 海洋环境下金属材料微生物腐蚀研究进展 [J]. 表面技术, 2018, 47(8): 182
|
22 |
Tian L, Wang Z M, Krupnick A, et al. Stimulating shale gas development in China: A comparison with the US experience [J]. Energy Policy, 2014, 75: 109
|
23 |
Zhai F T, Li H H, Xu C M. Corrosion behavior of 2507 duplex stainless steel in cooling water with different IOB contents [J]. J. Xi'an Technol. Univ., 2015, 35: 655
|
|
翟芳婷, 李辉辉, 胥聪敏. 2507双相不锈钢在含铁氧化菌冷却水中的腐蚀行为 [J]. 西安工业大学学报, 2015, 35: 655
|
24 |
Zhu M, Du C W, Li X G, et al. Effect of strength and microstructure on stress corrosion cracking behavior and mechanism of X80 pipeline steel in high pH carbonate/bicarbonate solution [J]. J. Mater. Eng. Perform., 2014, 23: 1358
|
25 |
Zhang Q L, Wang D, Xue M H, et al. Corrosion behavior of X100 steel in flowing chloride [J]. Mater. Prot., 2019, 52(10): 8
|
|
张秋利, 王丹, 薛梦含等. X100钢在流动氯化物中的腐蚀行为 [J]. 材料保护, 2019, 52(10): 8
|
26 |
Zhang J, Song X X, Luan X, et al. Effects of shewanella algae on corrosion of Zn-Al-Cd anode [J]. Acta Metall. Sin., 2012, 48: 1495
|
|
张杰, 宋秀霞, 栾鑫等. 海藻希瓦氏菌对Zn-Al-Cd牺牲阳极的腐蚀性能影响 [J]. 金属学报, 2012, 48: 1495
|
27 |
Liu H W, Xu D K, Dao A Q, et al. Study of corrosion behavior and mechanism of carbon steel in the presence of Chlorella vulgaris [J]. Corros. Sci., 2015, 101: 84
|
28 |
Cloete T E, Brözel V S, Von Holy A. Practical aspects of biofouling control in industrial water systems [J]. Int. Biodeterior. Biodegrad., 1992, 29: 299
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|