Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (2): 248-254    DOI: 10.11902/1005.4537.2020.105
Current Issue | Archive | Adv Search |
Corrosion Behavior of L245 Pipeline Steel in Shale Gas Fracturing Produced Water Containing Iron Bacteria
WANG Kuntai, CHEN Fu(), LI Huan, LUO Mina, HE Jie, LIAO Zihan
School of Chemical Engineering, Southwest University of Petroleum, Chengdu 610500, China
Download:  HTML  PDF(4401KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To provide theoretical reference for the corrosion protection engineering of metallic facilities in the water treatment process of shale gas fracturing produced water, the corrosion behavior of L245 steel induced by iron bacteria (FB) in shale gas fracturing produced water was studied by means of immersion test with mass loss measurement, electrochemical test and SEM characterization. Results showed that both of the shale gas fracturing produced waters with and without iron bacteria could all cause corrosion of L245 steel, but mass loss analysis and polarization curve analysis proved that the presence of FB promotes the corrosion of L245 steel. Further, the electrochemical impedance fitting results showed that in the shale gas fracturing produced water without FB, the corrosion rate of L245 steel increased slowly in the first 5 d, and then rapidly decreased. Whereas, in the shale gas fracturing produced water containing FB, the corrosion rate of L245 steel first decreased untill 8 d and then increased rapidly. SEM analysis results showed that the formed corrosion product films are quite different in the shale gas fracturing produced waters with and without iron bacteria.

Key words:  L245 steel      iron bacteria      electrochemistry      microbiologically influenced corrosion      shale gas fracturing produced water     
Received:  20 June 2020     
ZTFLH:  TG127.5  
Fund: Science & Technology Project of Sichuan(2019YJ0353)
Corresponding Authors:  CHEN Fu     E-mail:  chenfu@swpu.edu.cn
About author:  CHEN Fu, E-mail: chenfu@swpu.edu.cn

Cite this article: 

WANG Kuntai, CHEN Fu, LI Huan, LUO Mina, HE Jie, LIAO Zihan. Corrosion Behavior of L245 Pipeline Steel in Shale Gas Fracturing Produced Water Containing Iron Bacteria. Journal of Chinese Society for Corrosion and protection, 2021, 41(2): 248-254.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.105     OR     https://www.jcscp.org/EN/Y2021/V41/I2/248

Fig.1  Polarization curves of L245 steel after immersion for 21 d in the simulated solutions without and with FB
Fig.2  Nyquist (a, b) and Bode (c, d) plots of L245 steel after immersion in the simulated solutions without (a, c) and with FB (b, d) for different time
Fig.3  Electrochemical equivalent circuits used for modeling of EIS of L245 steel in the simulated solutions without (a) and with (b) FB
Time dRsΩ·cm2Qdl

Rct

Ω·cm2

Ydl / 10-6 Ω-1·cm-2·s-nndl
415.23470.60.754555.8
514.9816290.592434.7
815.967960.789784.9
1015.918460.798895.6
1615.5513970.7641700
2115.5915460.7432911
Table 1  Fitting electrochemical parameters of EIS of L245 steel in sterile produced water
Time dRsΩ·cm2Qf

Rf

Ω·cm2

Qdl

Rct

Ω·cm2

Yf / 10-6 Ω-1·cm-2·s-nndlYdl / 10-6 Ω-1·cm-2·s-nndl
422.422860.854196737620.972299.5
521.513420.842169034880.933320.5
819.22660.5302.9814840.8421488
1015.317240.6900.021---0.8941016
1614.6524711.73115180.753845.7
2115.6418930.83938.04202.40.980816.9
Table 2  Fitting electrochemical parameters of EIS of L245 steel in FB-containing produced water
Fig.4  SEM surface images of L245 steel after immersion for 21 d in the solutions without (a) and with (b) FB
1 Hatzenbuhler H, Centner T J. Regulation of water pollution from hydraulic fracturing in horizontally-drilled wells in the marcellus shale region, USA [J]. Water, 2012, 4: 983
2 Theodori G L, Luloff A E, Willits F K, et al. Hydraulic fracturing and the management, disposal, and reuse of frac flowback waters: Views from the public in the Marcellus Shale [J]. Energy Res. Soc. Sci., 2014, 2: 66
3 Wang D. Technical progress of shale gas produced water treatment [J]. Environ. Eng., 2016, 34(): 424
王丹. 页岩气采出水处理工艺技术研究进展 [J]. 环境工程, 2016, 34(): 424
4 Wang J, Yan Y L, Yang Z G. Corrosion protection technology in the treatment of fracturing flow-back fluid of shale gas [J]. Surf. Technol., 2016, 45(8): 63
王娟, 燕永利, 杨志刚. 页岩气压裂返排液处理过程中的腐蚀防护技术 [J]. 表面技术, 2016, 45(8): 63
5 Gordalla B C, Ewers U, Frimmel F H. Hydraulic fracturing: A toxicological threat for groundwater and drinking-water? [J]. Environ. Earth Sci., 2013, 70: 3875
6 Wang M C, Wang M, Zhang Y Z, et al. Study on feasible treatment technologies for shale gas produced wastewater [J]. Mod. Chem. Ind., 2019, 39(3): 198
王美城, 王敏, 张宇州等. 页岩气产出水的可行性处理工艺研究 [J]. 现代化工, 2019, 39(3): 198
7 Shu F C, Lai Y L, Zhang Y. Study on corrosion and protection of oil-field produced water [J]. Total Corros. Control, 2007, 21(5): 8
舒福昌, 赖燕玲, 张煜. 油田产出水的腐蚀及防护研究 [J]. 全面腐蚀控制, 2007, 21(5): 8
8 Li J D, Wang C D, Liu J, et al. Corrosion analysis, and use of an inhibitor in oil wells [J]. Res. Chem. Intermed., 2014, 40: 649
9 Shi X B, Yang C G, Yan W, et al. Microbiologically influenced corrosion of pipeline steels [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 9
史显波, 杨春光, 严伟等. 管线钢的微生物腐蚀 [J]. 中国腐蚀与防护学报, 2019, 39: 9
10 Yao Y, Zhang Q L, Qin F L, et al. Effect of iron bacteria on corrosion behavior of J55 steel [J]. Corros. Prot., 2016, 37: 206
姚蓉, 张秋利, 秦芳玲等. 铁细菌对J55钢腐蚀行为的影响 [J]. 腐蚀与防护, 2016, 37: 206
11 Zhang W Y. Advances in the study of microbiologically influenced corrosion in marine environment [J]. Total Corros. Control, 2017, 31(1): 8
张文毓. 海洋微生物腐蚀研究进展 [J]. 全面腐蚀控制, 2017, 31(1): 8
12 Zheng C B, Hu X H, Zhang J, et al. Effect of chlorella vulgaris on corrosion behavior of Q235 carbon steel in seawater [J]. Corros. Prot., 2018, 39: 247
郑传波, 胡秀华, 张杰等. 海水中小球藻对Q235碳钢腐蚀行为的影响 [J]. 腐蚀与防护, 2018, 39: 247
13 Li F X, Wang Z K, Liu H L, et al. Corrosion and sterilization of pipelines by bacteria [J]. Oil-Gasfield Surf. Eng., 2014, 33(9): 22
李凤霞, 王郑库, 刘虹利等. 细菌对管道的腐蚀及杀菌实验 [J]. 油气田地面工程, 2014, 33(9): 22
14 Xu W J, Sun C, Han E-H. Effects of SRB on corrosion of 1Cr13 stainless steel in sea mud [J]. J. Mater. Prot., 2002, 35(11): 3
徐文杰, 孙成, 韩恩厚. 海泥中硫酸盐还原菌对1Cr13不锈钢腐蚀的影响 [J]. 材料保护, 2002, 35(11): 3
15 Liu H W, Liu H F, Qin S, et al. Investigation of biomineralization induced by sulfate reducing bacteria in sewage gathering pipelines in oilfield [J]. Corros. Sci. Prot. Technol., 2015, 27: 7
刘宏伟, 刘宏芳, 秦双等. 集输管线硫酸盐还原菌诱导生物矿化作用调查 [J]. 腐蚀科学与防护技术, 2015, 27: 7
16 Liu L, Jing J Q, Xie J F, et al. Study on physiological and biochemical characteristics and corrosion behavior of sulfate reducing bacteria isolated from oil pipeline [J]. Cont. Chem. Ind., 2016, 45: 263
刘黎, 敬加强, 谢俊峰等. 一株分离自输油管线中的硫酸盐还原菌生理生化特性及腐蚀行为研究 [J]. 当代化工, 2016, 45: 263
17 Lv Y L, Liu H W, Xiong F P, et al. Corrosion behavior of X80 pipeline steel in oil-field produced water containing iron oxidizing bacteria [J]. Corros. Sci. Prot. Technol., 2017, 29: 343
吕亚林, 刘宏伟, 熊福平等. 铁氧化菌对X80管线钢腐蚀行为的影响 [J]. 腐蚀科学与防护技术, 2017, 29: 343
18 Starosvetsky D, Armon R, Yahalom J, et al. Pitting corrosion of carbon steel caused by iron bacteria [J]. Int. Biodeterior. Biodegrad., 2001, 47: 79
19 Duan Y, Li S M, Du J, et al. Corrosion behavior of Q235 steel in the presence of pseudomonas and iron bacteria [J]. Acta Phys.- Chim. Sin., 2010, 26: 3203
段冶, 李松梅, 杜娟等. Q235钢在假单胞菌和铁细菌混合作用下的腐蚀行为 [J]. 物理化学学报, 2010, 26: 3203
20 Yin B J, Zhao W Z, Shi J Q. Study on microbial corrosion of metals [J]. Sichuan Chem. Ind., 2004, 7(1): 30
尹宝俊, 赵文轸, 史交齐. 金属微生物腐蚀的研究 [J]. 四川化工, 2004, 7(1): 30
21 Tian F, Bai X Q, He X Y, et al. Research progress on microbiological induced corrosion of metallic materials under ocean environment [J]. Surf. Technol., 2018, 47(8): 182
田丰, 白秀琴, 贺小燕等. 海洋环境下金属材料微生物腐蚀研究进展 [J]. 表面技术, 2018, 47(8): 182
22 Tian L, Wang Z M, Krupnick A, et al. Stimulating shale gas development in China: A comparison with the US experience [J]. Energy Policy, 2014, 75: 109
23 Zhai F T, Li H H, Xu C M. Corrosion behavior of 2507 duplex stainless steel in cooling water with different IOB contents [J]. J. Xi'an Technol. Univ., 2015, 35: 655
翟芳婷, 李辉辉, 胥聪敏. 2507双相不锈钢在含铁氧化菌冷却水中的腐蚀行为 [J]. 西安工业大学学报, 2015, 35: 655
24 Zhu M, Du C W, Li X G, et al. Effect of strength and microstructure on stress corrosion cracking behavior and mechanism of X80 pipeline steel in high pH carbonate/bicarbonate solution [J]. J. Mater. Eng. Perform., 2014, 23: 1358
25 Zhang Q L, Wang D, Xue M H, et al. Corrosion behavior of X100 steel in flowing chloride [J]. Mater. Prot., 2019, 52(10): 8
张秋利, 王丹, 薛梦含等. X100钢在流动氯化物中的腐蚀行为 [J]. 材料保护, 2019, 52(10): 8
26 Zhang J, Song X X, Luan X, et al. Effects of shewanella algae on corrosion of Zn-Al-Cd anode [J]. Acta Metall. Sin., 2012, 48: 1495
张杰, 宋秀霞, 栾鑫等. 海藻希瓦氏菌对Zn-Al-Cd牺牲阳极的腐蚀性能影响 [J]. 金属学报, 2012, 48: 1495
27 Liu H W, Xu D K, Dao A Q, et al. Study of corrosion behavior and mechanism of carbon steel in the presence of Chlorella vulgaris [J]. Corros. Sci., 2015, 101: 84
28 Cloete T E, Brözel V S, Von Holy A. Practical aspects of biofouling control in industrial water systems [J]. Int. Biodeterior. Biodegrad., 1992, 29: 299
[1] RAN Dou, MENG Huimin, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of Temperature on Corrosion Behavior of 14Cr12Ni3-WMoV Stainless Steel in 0.02 mol/L NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(3): 362-368.
[2] MA Gang, GU Yanhong, ZHAO Jie. Research Progress on Sulfate-reducing Bacteria Induced Corrosion of Steels[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
[3] HE Jing, YANG Chuntian, LI Zhong. Research Progress of Microbiologically Influenced Corrosion and Protection in Building Industry[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[4] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[5] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[6] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[7] ZHAI Sixin, YANG Xingyun, YANG Jilan, GU Jianfeng. Corrosion Properties of Quenching-Partitioning-Tempering Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[8] WANG Yu, WU Jiajia, ZHANG Dun. Research Progress on Corrosion of Metal Materials Caused by Dissimilatory Iron-reducing Bacteria in Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[9] FU Haibo, LIU Xiaoru, SUN Yuan, CAO Dali. Corrosion Resistance of Epoxy Resin/recrystallized Silicon Carbide Composite[J]. 中国腐蚀与防护学报, 2020, 40(4): 373-380.
[10] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[11] XU Congmin,LUO Lihui,WANG Wenyuan,ZHAO Miaomiao,TIAN Yongqiang,SONG Pengdi. Enhancing Sterilization Effect of Bactericide by D-tyrosine to Iron Bacterial Biofilm on Carbon Steel Surface[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
[12] YU Mei,WEI Xindi,FAN Shiyang,LIU Jianhua,LI Songmei,ZHONG Jinyan. Corrosion Behavior of 2297 Al-Li Alloy under Tensile Load[J]. 中国腐蚀与防护学报, 2019, 39(5): 439-445.
[13] Xianbo SHI,Chunguang YANG,Wei YAN,Dake XU,Maocheng YAN,Yiyin SHAN,Ke YANG. Microbiologically Influenced Corrosion of Pipeline Steels[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[14] Mingyu BAO, Chengqiang REN, Jingsi HU, Bo LIU, Jiameng LI, Feng WANG, Li LIU, Xiaoyang GUO. Stress Induced Corrosion Electrochemical Behavior of Steels for Oil and Gas Pipes[J]. 中国腐蚀与防护学报, 2017, 37(6): 504-512.
[15] Xiuzhou LIN, Li YANG, Yongjun MEI, Xingwen ZHENG, Shuwen LUO, Xuejun CUI. Corrosion Electrochemical Behavior Beneath Thin Electrolyte Layer of Potassium Formate Solution of Cd-plated 4130 Steel Used for Aircraft Landing Gear[J]. 中国腐蚀与防护学报, 2017, 37(6): 567-574.
No Suggested Reading articles found!