Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (6): 1051-1057    DOI: 10.11902/1005.4537.2021.273
Current Issue | Archive | Adv Search |
Influence of Temperature on Microbial Induced Corrosion of Tank Bottom for Crude Oil Storage
MA Kaijun1, WANG Mengmeng1, SHI Zhenlong1, CHEN Changfeng2(), JIA Xiaolan2
1. Eastern Oil Storage and Transportation Co. Ltd., Pipe China Network Corporation, Xuzhou 221008, China
2. School of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
Cite this article: 

MA Kaijun, WANG Mengmeng, SHI Zhenlong, CHEN Changfeng, JIA Xiaolan. Influence of Temperature on Microbial Induced Corrosion of Tank Bottom for Crude Oil Storage. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 1051-1057.

Download:  HTML  PDF(8908KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influence of temperature on the microbial induced corrosion (uniform corrosion rate and local corrosion rate) of the tank bottom for crude oil storage was assessed by means of 16S rRNA gene sequencing, as well as scanning electron microscope and laser confocal microscope in terms of the characteristics of microbial populations, and the morphology of the microbial film, and the characteristics of pitting. The results showed that the water microorganisms on the tank bottom composed of mesophilic and thermophilic sulfate-reducing bacteria (SRB), and saprophytic bacteria (TGB). The uniform corrosion rate of the Q235A steel plate reached a peak at 65 ℃, however, the overall corrosion rate was slight. The pitting corrosion rate peaked at 35 ℃, reaching 0.8 mm/a, and the pitting corrosion rate decreased significantly at temperatures below 25 ℃ and over 85 ℃. The influence of temperature on the microbial induced corrosion of the Q235A steel plate of tank floor is related to the temperature tolerance of microbial species. The temperature range between 30 and 70 ℃ is the sensitive temperature range of pitting corrosion. The emerge of corrosion pits are related to the growth of colony clusters, while microbes first form clusters on the metal surface. Therefore,during the process of metabolism, the metal beneath the colonies was rapidly corroded.

Key words:  tank bottom corrosion      microbial corrosion      pitting      sulfate reducing bacteria      saprophytic bacteria      temperature resistance     
Received:  09 October 2021     
ZTFLH:  TG174  
About author:  CHEN Changfeng, E-mail: chen_c_f@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.273     OR     https://www.jcscp.org/EN/Y2022/V42/I6/1051

Fig.1  Microbial corrosion images of the bottom plate of a stock tank, showing the local corrosion in the weld area (a) and pitting pit in the middle of the plate (b)
Fig.2  16S rRNA gene sequencing analysis of the abundance distributions of phylum (a) and genus (b) of microorganisms in water at the tank bottom
PhylumGenusContent / %Nature
ThermotogaeMesotoga3.08G+Anaerobic or facultative, thermophilic bacteria, metabolize sugar, protein, oxidize sulfate
ProteobacteriaDesulfovibrio3.12G- Anaerobic, non-spore, mesophilic bacteria, oxidized sulfide
Desulfobacter0.57
BacteroidetesMacellibacteroides6.38G+Anaerobic, no spores, metabolize sugar to produce acid, mesophilic bacteria
Proteiniphilum6.7G-Anaerobic, non-spore, metabolizing organic product propionic acid, mesophilic bacteria
FirmicutesBacillus11.64G+Aerobic or anaerobic, with spores, metabolizing sugar to produce acid, mesophilic bacteria
Sporotomaculum0.9G+Anaerobic Spore Metabolism of Benzoate Lipids Methanogenic, Mesophilic Bacteria
Gracilibacter0.19G-Anaerobic, non-spore, metabolizing organic matter, thermophilic bacteria
Hydrogenoanaerobacterium0.6G+Anaerobic, hydrogen or methane production, mesophilic bacteria
Ruminococcus0.33G+Anaerobic, metabolizing cellulose, acid producing, spherical, mesophilic bacteria
Tyzzerella4.7G+Anaerobic, acid-producing, mesophilic bacteria
Clostridium16.18G+Anaerobic, metabolize glycoprotein, produce acid or alcohol, thermophilic bacteria
Tepidimicrobium0.36G+Anaerobic, sporulation, metabolizing organic matter, utilization of sulfide, thermophilic bacteria
Proteiniclasticum7.67G-Anaerobic, non-spore, metabolizing protein, acid producing, mesophilic bacteria
Terrisporobacter25.07G+Anaerobic, spore-forming, spherical, metabolizing sugar, acid-producing, mesophilic bacteria
Sedimentibacter7.1G+Anaerobic, spore production, amino acid metabolism, acid production, mesophilic bacteria
Table 1  Abundance and characteristics of microorganisms in water at the tank bottom
Fig.3  Influences of temperature on the uniform corrosion rate (a) and maximum pitting depth (b) of the microbiological corrosion of the bottom plate of a stock tank
Fig.4  Surface morphologies (a, c, e) and pitting morphologies (b, d, f) of the bottom plate of a stock tank after microbial corrosion at 25 ℃ (a, b), 35 ℃ (c, d) and 65 ℃ (e, f)
Fig.5  Internal view of a pitting pit formed on the bottom plate of a stock tank after corrosion at 35 ℃
Fig.6  Contour morphologies of the largest pitting pits formed after corrosion at 25 ℃ (a), 35 ℃ (b) and 65 ℃ (c)
[1] Liu S, Wang J, Cheng H H, et al. Corrosion mechanism and protective measures of inner wall baseplate of large crude oil storage tank [J]. Surf. Technol., 2017, 46(11): 47
(刘栓, 王娟, 程红红 等. 大型原油储罐内壁底板腐蚀机理及防护措施 [J]. 表面技术, 2017, 46(11): 47)
[2] Javaherdashti R. Microbiologically influenced corrosion (MIC) [A]. Microbiologically Influenced Corrosion: An Engineering Insight [M]. Cham: Springer, 2017: 31
[3] Shi X B, Yang C G, Yan W, et al. Microbiologically influenced corrosion of pipeline steels [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 9
(史显波, 杨春光, 严伟 等. 管线钢的微生物腐蚀 [J]. 中国腐蚀与防护学报, 2019, 39: 9)
[4] Zhang F, Wang H T, He Y J, et al. Case analysis of microbial corrosion in product oil pipeline [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 795
(张斐, 王海涛, 何勇君 等. 成品油输送管道微生物腐蚀案例分析 [J]. 中国腐蚀与防护学报, 2021, 41: 795)
[5] Shi J Y, Tao G F, Lu Y Q, et al. Study on the microbiological corrosion behavior of X65 pipeline steel by SRB and IB [J]. Oil Gas Field Surf. Eng., 2021, 40(8): 12
(史晶莹, 陶桂凤, 卢永强 等. SRB和IB对X65管线钢的微生物腐蚀行为研究 [J]. 油气田地面工程, 2021, 40(8): 12)
[6] Ma G, Gu Y H, Zhao J. Research progress on sulfate-reducing bacteria induced corrosion of steels [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 289
(马刚, 顾艳红, 赵杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 289)
[7] Zhang R Y, Zhao G A, Shi D Y, et al. Experimental study on microbiologically influenced corrosion of natural gas gathering pipelines [J]. Mater. Prot., 2019, 52(11): 38
(张仁勇, 赵国安, 施岱艳 等. 天然气集输管道的微生物腐蚀试验研究 [J]. 材料保护, 2019, 52(11): 38)
[8] Jiang X, Fan J Z, Qu D R, et al. Corrosion failure analysis on an underground pipeline for a gas gathering station [J]. Corros. Sci. Prot. Technol., 2019, 31: 320
(蒋秀, 范举忠, 屈定荣 等. 某集气站埋地管道腐蚀失效原因分析 [J]. 腐蚀科学与防护技术, 2019, 31: 320)
[9] Wang K T, Chen F, Li H, et al. Corrosion behavior of L245 pipeline steel in shale gas fracturing produced water containing iron Bacteria [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 248
(王坤泰, 陈馥, 李环 等. 铁细菌对L245钢腐蚀行为的影响研究 [J]. 中国腐蚀与防护学报, 2021, 41: 248)
[10] Chen X Y, Zhao Q H, Guo P. Discussion on the causes of gas field corrosion and anti-corrosion measures [J]. Total Corros. Control, 2020, 34(9): 95
(陈晓宇, 赵启宏, 郭朴. 关于气田腐蚀原因及防腐措施探究 [J]. 全面腐蚀控制, 2020, 34(9): 95)
[11] Xu D, Li Y, Gu T. A synergistic D-tyrosine and tetrakis hydroxy‐methyl phosphonium sulfate biocide combination for the mitigation of an SRB biofilm [J]. World J. Microbiol. Biotechnol., 2012, 28: 3067
doi: 10.1007/s11274-012-1116-0
[12] Cord-Ruwisch R, Widdel F. Corroding iron as a hydrogen source for sulphate reduction in growing cultures of sulphate-reducing bacteria [J]. Appl. Microbiol. Biotechnol., 1986, 25: 169
doi: 10.1007/BF00938942
[13] Matias P M, Pereira I A C, Soares C M, et al. Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview [J]. Prog. Biophys. Mol. Biol., 2005, 89: 292
doi: 10.1016/j.pbiomolbio.2004.11.003
[14] Antony P J, Raman R K S, Mohanram R, et al. Influence of thermal aging on sulfate-reducing bacteria (SRB)-influenced corrosion behaviour of 2205 duplex stainless steel [J]. Corros. Sci., 2008, 50: 1858
doi: 10.1016/j.corsci.2008.03.009
[15] Hardy J A, Bown J L. The corrosion of mild steel by biogenic sulfide films exposed to air [J]. Corrosion, 1984, 40: 650
doi: 10.5006/1.3593903
[16] Duan J Z, Wu S R, Zhang X J, et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater [J]. Electrochim. Acta, 2008, 54: 22
doi: 10.1016/j.electacta.2008.04.085
[17] Li H B, Xu D K, Li Y C, et al. Extracellular electron transfer is a bottleneck in the microbiologically influenced corrosion of C1018 carbon steel by the biofilm of sulfate-reducing bacterium Desulfovibrio vulgaris [J]. PLoS One, 2015, 10(8): e0136183
doi: 10.1371/journal.pone.0136183
[18] Sherar B W A, Power I M, Keech P G, et al. Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion [J]. Corros. Sci., 2011, 53: 955
doi: 10.1016/j.corsci.2010.11.027
[19] Fadhlaoui K, Ben Hania W, Armougom F, et al. Obligate sugar oxidation in Mesotoga spp., phylum Thermotogae, in the presence of either elemental sulfur or hydrogenotrophic sulfate‐reducers as electron acceptor [J]. Environ. Microbiol., 2018, 20: 281
doi: 10.1111/1462-2920.13995 pmid: 29124868
[20] Whitman W B. Bergey's Manual of Systematics of Archaea and Bacteria [M]. Hoboken, New Jersey: Wiley, 2015: 1
[21] Du C, Webb C. Cellular systems [A]. Murray M Y. Comprehensive Biotechnology [M]. 2nd ed. Burlington, VT: Academic Press, 2011: 11
[22] Muyzer G, Stams A J M. The ecology and biotechnology of sulphate-reducing bacteria [J]. Nat. Rev. Microbiol., 2008, 6: 441
doi: 10.1038/nrmicro1892
[23] Isaksen M F, Jorgensen B B. Adaptation of psychrophilic and psychrotrophic sulfate-reducing bacteria to permanently cold marine environments [J]. Appl. Environ. Microbiol., 1996, 62: 408
doi: 10.1128/aem.62.2.408-414.1996
[24] Knoblauch C, Jørgensen B B, Harder J. Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in arctic marine sediments [J]. Appl. Environ. Microbiol., 1999, 65: 4230
doi: 10.1128/AEM.65.9.4230-4233.1999
[25] Li J Y, Huang W B, Wang X L, et al. Research on screening and physiological characteristics of sulfate reducing bacteria [J]. Anhui Agric. Sci., 2010, 38: 16092
(李俊叶, 黄伟波, 王筱兰 等. 硫酸盐还原菌的筛选及生理特性研究 [J]. 安徽农业科学, 2010, 38: 16092)
[26] Henry E A, Devereux R, Maki J S, et al. Characterization of a new thermophilic sulfate-reducing bacterium [J]. Arch. Microbiol., 1994, 161: 62
pmid: 11541228
[27] Chen M Y. The growth and the sulfur metabolisms of thermophilic sulfate-reducing bacteria at different temperatures [J]. Guangdong Chem. Ind., 2016, 43(3): 31
(陈鸣渊. 嗜热硫酸盐还原菌在不同温度下的生长及其硫代谢 [J]. 广东化工, 2016, 43(3): 31)
[28] Liu H F, Liu T. Growth characteristics of thermophile sulfate-reducing bacteria and its effect on carbon steel [J]. J. Chin. Soc. Corros. Prot., 2009, 29(2): 93
(刘宏芳, 刘涛. 嗜热硫酸盐还原菌生长特征及其对碳钢腐蚀的影响 [J]. 中国腐蚀与防护学报, 2009, 29(2): 93)
[29] Liu T, Liu H, Hu Y, et al. Growth characteristics of thermophile sulfate-reducing bacteria and its effect on carbon steel [J]. Mater. Corros., 2009, 60: 218
doi: 10.1002/maco.200805063
[30] Lin J, Zhu G W, Sun C, et al. A review of microbiologically influenced corrosion of metals [J]. Corros. Sci. Prot. Technol., 2001, 13(5): 279
(林建, 朱国文, 孙成 等. 金属的微生物腐蚀 [J]. 腐蚀科学与防护技术, 2001, 13(5): 279)
[31] Gu T Y, Zhao K L, Nesic S. A new mechanistic model for mic based on a biocatalytic cathodic sulfate reduction theory [A]. Corrosion 2009 [C]. Atlanta, Georgia, 2009
[1] XIONG Yiming, MEI Wan, WANG Zehua, YU Rui, XU Shiyao, WU Lei, ZHANG Xin. Corrosion Behavior of 5083 Al-alloy under Magnetic Field[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[2] REN Wankai, LIAN Zhouyang, ZHOU Kang, LUO Zhengwei, WEI Wuji, ZHANG Xueying. Influence of Ammonia Desulfurization Liquid Components on Localized Corrosion Development Stage of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[3] LIU Wei. Asymmetric Surface Configuration for Electrochemical Noise Measurement on Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1151-1158.
[4] GAO Qiuying, ZENG Wenguang, WANG Heng, LIU Yuancong, HU Junying. Effect of Fluid Scouring on Sulfate Reducting Bacteria Induced Corrosion of Pipeline Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1087-1093.
[5] GAO Zhiyue, JIANG Bo, FAN Zhibin, WANG Xiaoming, LI Xingeng, ZHANG Zhenyue. Corrosion Behavior of Typical Grounding Materials in Artificial Alkaline Soil Solution[J]. 中国腐蚀与防护学报, 2023, 43(1): 191-196.
[6] BAO Yefeng, WU Zhuyu, CHEN Zhe, GUO Linpo, WANG Zirui, CAO Chong, SONG Qining. Effect of Sensitization Treatment on Electrochemical Corrosion and Pitting Corrosion of 00Cr21NiMn5Mo2N Stainless Steel[J]. 中国腐蚀与防护学报, 2022, 42(6): 1027-1033.
[7] XU Ping, ZHAO Meihui, BAI Pengkai. Effect of Hydroxyethylidene Diphosphonic Acid on Iron Bacteria Induced Corrosion of Carbon Steel in Circulating Cooling Water[J]. 中国腐蚀与防护学报, 2022, 42(6): 988-994.
[8] HUANG Lianpeng, ZHANG Xin, XIONG Yiming, TAO Jiahao, WANG Zehua, ZHOU Zehua. Corrosion Behavior of Al-3.0Mg-xRE/Fe Alloys Under Magnetic Field of Different Intensities[J]. 中国腐蚀与防护学报, 2022, 42(5): 833-838.
[9] WAN Ye, SONG Fangling, LI Lijun. Corrosion Characteristics of Carbon Steel in Simulated Marine Atmospheres[J]. 中国腐蚀与防护学报, 2022, 42(5): 851-855.
[10] GUO Na, MAO Xiaomin, HUI Xinrui, GUO Zhangwei, LIU Tao. Corrosion Behavior of 316L Stainless Steel in Media Containing Pyomelanin Secreted by Pseudoalteromonas lipolytica[J]. 中国腐蚀与防护学报, 2022, 42(5): 743-751.
[11] ZHAO Baozhu, ZHU Min, YUAN Yongfeng, GUO Shaoyi, YIN Simin. Comparison of Corrosion Resistance of CoCrFeMnNi High Entropy Alloys with Pipeline Steels in an Artificial Alkaline Soil Solution[J]. 中国腐蚀与防护学报, 2022, 42(3): 425-434.
[12] CHEN Hao, FAN Zhibin, CHEN Zhijian, ZHOU Xuejie, ZHENG Penghua, WU Jun. Effect of Cl- and HSO3- on Corrosion Behavior of 439 Stainless Steel Used in Construction[J]. 中国腐蚀与防护学报, 2022, 42(3): 493-500.
[13] XIN Yechun, XU Wei, ZHAO Dongyang, ZHANG Bo. Pitting Corrosion Behavior of Ultra-fine Lamellated Al-4%Cu Alloy[J]. 中国腐蚀与防护学报, 2022, 42(2): 274-280.
[14] LIU Jun, GENG Yongjuan, LI Shaochun, XU Ailing, HOU Dongshuai, LIU Ang, LANG Xiulu, CHEN Xu, LIU Guofeng. Protection Efficacy of TEOS/IBTS Coating on Microbial Fouling of Concrete in Marine Tidal Areas[J]. 中国腐蚀与防护学报, 2022, 42(1): 135-142.
[15] LI Hongjin, WANG Qishan, LIAO Zihan, SUN Xiangrui, SUN Hui, ZHANG Xinyang, CHEN Xu. Electrochemical Noise Behavior of X70 Steel and Its Weld in Cl--containing High pH Solution[J]. 中国腐蚀与防护学报, 2022, 42(1): 60-66.
No Suggested Reading articles found!