Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (4): 765-772    DOI: 10.11902/1005.4537.2023.150
Current Issue | Archive | Adv Search |
Impact of Nitrate Addition on EH40 Steel Corrosion in Natural Seawater
WU Jiajia1,2, XU Ming1,2, WANG Peng1,2, ZHANG Dun1,2()
1.CAS Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
2.Open Studio for Marine Corrosion and Protection, Laoshan Laboratory, Qingdao 266237, China
Download:  HTML  PDF(12561KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The impact of nitrate addition on corrosion of EH40 steel in natural seawater was investigated. The corrosion rate, morphology and products of EH40 steel, as well as the formed biofilm morphology, and microbial communities on the steel immersed in natura seawater with various addition of nitrate (0, 0.1, 1, 10, and 100 mmol/L) for 12 weeks were studied by means of mass loss measurement, potentiodynamic polarization curves, SEM, CLSM, Raman spectroscopy, and examination of high throughput sequencing of 16S rRNA gene. It was found that corrosion of EH40 steel was promoted by nitrate addition, and the promotion degree was dependent on the contents of nitrate added. Meanwhile, localized corrosion was enhanced by nitrate addition. The impact of nitrate addition on the corrosion of EH40 steel is affected by microorganisms, correspondingly, which can change the structure of microbial communities of biofilms.

Key words:  seawater corrosion      microbiologically influenced corrosion      nitrate      EH40 steel     
Received:  09 May 2023      32134.14.1005.4537.2023.150
ZTFLH:  TG172  
Fund: Strategic Priority Program of Chinese Academy of Sciences(XDA23050104)
Corresponding Authors:  ZHANG Dun, E-mail: zhangdun@qdio.ac.cn   

Cite this article: 

WU Jiajia, XU Ming, WANG Peng, ZHANG Dun. Impact of Nitrate Addition on EH40 Steel Corrosion in Natural Seawater. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 765-772.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.150     OR     https://www.jcscp.org/EN/Y2023/V43/I4/765

Fig.1  Variations of corrosion mass loss (a) and average corrosion rate (b) vs time of EH40 steel in seawater added with different concentrations of nitrate
Fig.2  Potentiodynamic polarization curves (a) and Icorr (b) of EH40 steel immersed in seawater added with different concentrations of nitrate for 12 weeks
Fig.3  Images of surface corrosion products of EH40 steel immersed in seawater added with 0 (a), 0.1 (b), 1 (c), 10 (d) and 100 (e) mmol/L nitrate for 12 weeks
Fig.4  SEM images of surface corrosion products of EH40 steel immersed in seawater added with 0 (a1-e1), 0.1 (a2-e2), 1 (a3-e3), 10 (a4-e4) and 100 (a5-e5) mmol/L nitrate for 1 (a1-a5), 2 (b1-b5), 4 (c1-c5), 8 (d1-d5) and 12 (e1-e5) weeks
Fig.5  Surface CLSM images of EH40 steel with removal of corrosion products after being immersed in seawater without nitrate addition for 1 (a), 2 (b), 4 (c), 8 (d) and 12 (e) weeks
Fig.6  Surface CLSM images and corresponding maximum pit depth section profiles of EH40 steel with removal of corrosion products after being immersed in seawater added with 0.1 (a1-e1), 1 (a2-e2), 10 (a3-e3) and 100 (a4-e4) mmol/L nitrate for 1 (a1-a4), 2 (b1-b4), 4 (c1-c4), 8 (d1-d4) and 12 (e1-e4) weeks
Fig.7  Raman spectra of corrosion products formed on EH40 steel immersed in seawater added with different concentrations of nitrate for 12 weeks
Fig.8  Time dependence of corrosion mass loss of EH40 steel in sterile seawater added with different concentrations of nitrate
Fig.9  CLSM images of biofilms formed on EH40 steel immersed in seawater added with 0 (a1-e1), 0.1 (a2-e2), 1 (a3-e3), 10 (a4-e4) and 100 (a5-e5) mmol/L nitrate for 1 (a1-a5), 2 (b1-b5), 4 (c1-c5), 8 (d1-d5) and 12 (e1-e5) weeks
Fig.10  Histogram of microbial communities on EH40 steel after being immersed in seawater added with different concentration of nitrate for 12 weeks
1 Wang J M, Yang H D, Du M, et al. Corrosion of B10 Cu-Ni alloy in seawater polluted by high concentration of NH4 + [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 609
王家明, 杨昊东, 杜 敏 等. B10铜镍合金在高浓度NH4 +污染海水中腐蚀研究 [J]. 中国腐蚀与防护学报, 2021, 41: 609
doi: 10.11902/1005.4537.2020.222
2 Ma G, Gu Y H, Zhao J. Research progress on sulfate-reducing bacteria induced corrosion of steels [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 289
马 刚, 顾艳红, 赵 杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 289
3 Davidova I, Hicks M S, Fedorak P M, et al. The influence of nitrate on microbial processes in oil industry production waters [J]. J. Ind. Microbiol. Biotechnol., 2001, 27: 80
doi: 10.1038/sj.jim.7000166
4 Bødtker G, Thorstenson T, Lilleb B L P, et al. The effect of long-term nitrate treatment on SRB activity, corrosion rate and bacterial community composition in offshore water injection systems [J]. J. Ind. Microbiol. Biotechnol., 2008, 35: 1625
doi: 10.1007/s10295-008-0406-x
5 Yuk S, Kamarisima, Azam A H, et al. The contribution of nitrate-reducing bacterium Marinobacter YB03 to biological souring and microbiologically influenced corrosion of carbon steel [J]. Biochem. Eng. J., 2020, 156: 107520
doi: 10.1016/j.bej.2020.107520
6 Sun Z H, Wu J J, Zhang D, et al. Influence of nitrate concentrations on EH40 steel corrosion affected by coexistence of Desulfovibrio desulfuricans and Pseudomonas aeruginosa bacteria [J]. J. Oceanol. Limnol., 2022, 40: 1448
doi: 10.1007/s00343-021-1247-y
7 Liduino V S, Leoni G B, Sérvulo E F C, et al. Investigation of carbon steel corrosion by oilfield nitrate- and sulfate-reducing prokaryotes consortia in a hypersaline environment [J]. Environ. Sci. Pollut. Res., 2023, 30: 10830
doi: 10.1007/s11356-022-22896-y
8 Chen H Y, Wang W D, Du C A, et al. Study on the microbiological corrosion in oilfield reinjection water system inhibited by biological competition technology [J]. Ind. Water Treat., 2013, 33(6): 79
陈昊宇, 汪卫东, 杜春安 等. 生物竞争抑制油田回注水系统微生物腐蚀研究 [J]. 工业水处理, 2013, 33(6): 79
9 Nemati M, Jenneman G E, Voordouw G. Impact of nitrate-mediated microbial control of souring in oil reservoirs on the extent of corrosion [J]. Biotechnol. Prog., 2001, 17: 852
doi: 10.1021/bp010084v
10 Hubert C, Nemati M, Jenneman G, et al. Corrosion risk associated with microbial souring control using nitrate or nitrite [J]. Appl. Microbiol. Biotechnol., 2005, 68: 272
pmid: 15711941
11 Melchers R E, Jeffrey R J. Accelerated low water corrosion of steel piling in harbours [J]. Corros. Eng. Sci. Technol., 2013, 48: 496
doi: 10.1179/1743278213Y.0000000103
12 Duan J Z, Wu S R, Zhang X J, et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater [J]. Electrochim. Acta, 2008, 54: 22
doi: 10.1016/j.electacta.2008.04.085
13 Xue F, Wei X, Dong J H, et al. Effect of residual dissolved oxygen on the corrosion behavior of low carbon steel in 0.1 M NaHCO3 solution [J]. J. Mater. Sci. Technol., 2018, 34: 1349
doi: 10.1016/j.jmst.2017.11.004
14 Wan H X, Liu C L, Wang Z A, et al. Corrosion behavior of P110S oil casing steel in sulfur containing environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 371
万红霞, 刘重麟, 王子安 等. P110S油套管在微含硫环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 371
doi: 10.11902/1005.4537.2022.126
15 Froment F, Tournié A, Colomban P. Raman identification of natural red to yellow pigments: ochre and iron-containing ores [J]. J. Raman Spectrosc., 2008, 39: 560
doi: 10.1002/jrs.v39:5
16 Makkar N S, Casida Jr L E. Cupriavidus necator gen. nov., sp. nov.; a nonobligate bacterial predator of bacteria in Soil [J]. Int. J. Syst. Bacteriol., 1987, 37: 323
doi: 10.1099/00207713-37-4-323
17 Khan M A, Yadav S, Sharma R, et al. Augmentation of stimulated Pelomonas aquatica dispersible granules enhances remediation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) contaminated soil [J]. Environ. Technol. Innov., 2020, 17: 100594
doi: 10.1016/j.eti.2019.100594
18 Gevertz D, Telang A J, Voordouw G, et al. Isolation and characterization of strains CVO and FWKO B, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine [J]. Appl. Environ. Microbiol., 2000, 66: 2491
doi: 10.1128/AEM.66.6.2491-2501.2000
19 Schwartz E, Henne A, Cramm R, et al. Complete nucleotide sequence of pHG1: a Ralstonia eutropha H16 megaplasmid encoding key enzymes of H2-based lithoautotrophy and anaerobiosis [J]. J. Mol. Biol., 2003, 332: 369
doi: 10.1016/s0022-2836(03)00894-5 pmid: 12948488
20 Tuteja N. Mechanisms of high salinity tolerance in plants [J]. Methods Enzymol., 2007, 428: 419
21 Dorman S E G, Hoff B K, Reid T A, et al. The effect of Ralstonia pickettii on environmental fatigue crack growth of 7xxx series aluminum alloys [J]. Adv. Mater. Res., 2014, 891/892: 224
22 Jia R, Yang D Q, Xu J, et al. Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation [J]. Corros. Sci., 2017, 127: 1
doi: 10.1016/j.corsci.2017.08.007
23 Ress J, Monrrabal G, Díaz A, et al. Microbiologically influenced corrosion of welded AISI 304 stainless steel pipe in well water [J]. Eng. Fail. Anal., 2020, 116: 104734
doi: 10.1016/j.engfailanal.2020.104734
24 Wu J J, Gao J Y, Zhang D, et al. Microbial communities present on mooring chain steels with different copper contents and corrosion rates [J]. J. Oceanol. Limnol., 2020, 38: 378
doi: 10.1007/s00343-019-8366-8
[1] ZHANG Penghui, LI Xianchao, TONG Hongtao, ZHANG Yu, CHEN Cheng. Corrosion Behavior of 10CrNi3MoV Steel in Deep-sea Environment of Western Pacific[J]. 中国腐蚀与防护学报, 2022, 42(6): 1075-1080.
[2] LI Zhenxin, LV Meiying, DU Min. Effect of Combined Potential Polarization on Corrosion of X65 Steel in Seawater Inoculated with Iron Oxiding Bacteria[J]. 中国腐蚀与防护学报, 2022, 42(2): 211-217.
[3] HE Yongjun, ZHANG Tiansui, WANG Haitao, ZHANG Fei, LI Guangfang, LIU Hongfang. Research Progress of Biocides for Microbiologically Influenced Corrosion[J]. 中国腐蚀与防护学报, 2021, 41(6): 748-756.
[4] ZHANG Fei, WANG Haitao, HE Yongjun, ZHANG Tiansui, LIU Hongfang. Case Analysis of Microbial Corrosion in Product Oil Pipeline[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
[5] LV Meiying, LI Zhenxin, DU Min, WAN Zixuan. Effect of Culture Medium on Microbiologically Influenced Corrosion[J]. 中国腐蚀与防护学报, 2021, 41(6): 757-764.
[6] LI Guangquan, LI Guangfang, WANG Junqiang, ZHANG Tiansui, ZHANG Fei, JIANG Ximin, LIU Hongfang. Microbiologically Influenced Corrosion Mechanism and Protection of Offshore Pipelines[J]. 中国腐蚀与防护学报, 2021, 41(4): 429-438.
[7] MA Gang, GU Yanhong, ZHAO Jie. Research Progress on Sulfate-reducing Bacteria Induced Corrosion of Steels[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
[8] HE Jing, YANG Chuntian, LI Zhong. Research Progress of Microbiologically Influenced Corrosion and Protection in Building Industry[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[9] WANG Kuntai, CHEN Fu, LI Huan, LUO Mina, HE Jie, LIAO Zihan. Corrosion Behavior of L245 Pipeline Steel in Shale Gas Fracturing Produced Water Containing Iron Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[10] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[11] WANG Yu, WU Jiajia, ZHANG Dun. Research Progress on Corrosion of Metal Materials Caused by Dissimilatory Iron-reducing Bacteria in Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[12] ZHAI Sixin, YANG Xingyun, YANG Jilan, GU Jianfeng. Corrosion Properties of Quenching-Partitioning-Tempering Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[13] XU Congmin,LUO Lihui,WANG Wenyuan,ZHAO Miaomiao,TIAN Yongqiang,SONG Pengdi. Enhancing Sterilization Effect of Bactericide by D-tyrosine to Iron Bacterial Biofilm on Carbon Steel Surface[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
[14] Tangqing WU,Zhaofen ZHOU,Xinming WANG,Dechuang ZHANG,Fucheng YIN,Cheng SUN. Thermodynamic and Dynamic Analyses of Microbiologically Assisted Cracking[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[15] Xianbo SHI,Chunguang YANG,Wei YAN,Dake XU,Maocheng YAN,Yiyin SHAN,Ke YANG. Microbiologically Influenced Corrosion of Pipeline Steels[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
No Suggested Reading articles found!