|
|
Impact of Nitrate Addition on EH40 Steel Corrosion in Natural Seawater |
WU Jiajia1,2, XU Ming1,2, WANG Peng1,2, ZHANG Dun1,2( ) |
1.CAS Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China 2.Open Studio for Marine Corrosion and Protection, Laoshan Laboratory, Qingdao 266237, China |
|
|
Abstract The impact of nitrate addition on corrosion of EH40 steel in natural seawater was investigated. The corrosion rate, morphology and products of EH40 steel, as well as the formed biofilm morphology, and microbial communities on the steel immersed in natura seawater with various addition of nitrate (0, 0.1, 1, 10, and 100 mmol/L) for 12 weeks were studied by means of mass loss measurement, potentiodynamic polarization curves, SEM, CLSM, Raman spectroscopy, and examination of high throughput sequencing of 16S rRNA gene. It was found that corrosion of EH40 steel was promoted by nitrate addition, and the promotion degree was dependent on the contents of nitrate added. Meanwhile, localized corrosion was enhanced by nitrate addition. The impact of nitrate addition on the corrosion of EH40 steel is affected by microorganisms, correspondingly, which can change the structure of microbial communities of biofilms.
|
Received: 09 May 2023
32134.14.1005.4537.2023.150
|
|
Fund: Strategic Priority Program of Chinese Academy of Sciences(XDA23050104) |
Corresponding Authors:
ZHANG Dun, E-mail: zhangdun@qdio.ac.cn
|
1 |
Wang J M, Yang H D, Du M, et al. Corrosion of B10 Cu-Ni alloy in seawater polluted by high concentration of NH4 + [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 609
|
|
王家明, 杨昊东, 杜 敏 等. B10铜镍合金在高浓度NH4 +污染海水中腐蚀研究 [J]. 中国腐蚀与防护学报, 2021, 41: 609
doi: 10.11902/1005.4537.2020.222
|
2 |
Ma G, Gu Y H, Zhao J. Research progress on sulfate-reducing bacteria induced corrosion of steels [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 289
|
|
马 刚, 顾艳红, 赵 杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 289
|
3 |
Davidova I, Hicks M S, Fedorak P M, et al. The influence of nitrate on microbial processes in oil industry production waters [J]. J. Ind. Microbiol. Biotechnol., 2001, 27: 80
doi: 10.1038/sj.jim.7000166
|
4 |
Bødtker G, Thorstenson T, Lilleb B L P, et al. The effect of long-term nitrate treatment on SRB activity, corrosion rate and bacterial community composition in offshore water injection systems [J]. J. Ind. Microbiol. Biotechnol., 2008, 35: 1625
doi: 10.1007/s10295-008-0406-x
|
5 |
Yuk S, Kamarisima, Azam A H, et al. The contribution of nitrate-reducing bacterium Marinobacter YB03 to biological souring and microbiologically influenced corrosion of carbon steel [J]. Biochem. Eng. J., 2020, 156: 107520
doi: 10.1016/j.bej.2020.107520
|
6 |
Sun Z H, Wu J J, Zhang D, et al. Influence of nitrate concentrations on EH40 steel corrosion affected by coexistence of Desulfovibrio desulfuricans and Pseudomonas aeruginosa bacteria [J]. J. Oceanol. Limnol., 2022, 40: 1448
doi: 10.1007/s00343-021-1247-y
|
7 |
Liduino V S, Leoni G B, Sérvulo E F C, et al. Investigation of carbon steel corrosion by oilfield nitrate- and sulfate-reducing prokaryotes consortia in a hypersaline environment [J]. Environ. Sci. Pollut. Res., 2023, 30: 10830
doi: 10.1007/s11356-022-22896-y
|
8 |
Chen H Y, Wang W D, Du C A, et al. Study on the microbiological corrosion in oilfield reinjection water system inhibited by biological competition technology [J]. Ind. Water Treat., 2013, 33(6): 79
|
|
陈昊宇, 汪卫东, 杜春安 等. 生物竞争抑制油田回注水系统微生物腐蚀研究 [J]. 工业水处理, 2013, 33(6): 79
|
9 |
Nemati M, Jenneman G E, Voordouw G. Impact of nitrate-mediated microbial control of souring in oil reservoirs on the extent of corrosion [J]. Biotechnol. Prog., 2001, 17: 852
doi: 10.1021/bp010084v
|
10 |
Hubert C, Nemati M, Jenneman G, et al. Corrosion risk associated with microbial souring control using nitrate or nitrite [J]. Appl. Microbiol. Biotechnol., 2005, 68: 272
pmid: 15711941
|
11 |
Melchers R E, Jeffrey R J. Accelerated low water corrosion of steel piling in harbours [J]. Corros. Eng. Sci. Technol., 2013, 48: 496
doi: 10.1179/1743278213Y.0000000103
|
12 |
Duan J Z, Wu S R, Zhang X J, et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater [J]. Electrochim. Acta, 2008, 54: 22
doi: 10.1016/j.electacta.2008.04.085
|
13 |
Xue F, Wei X, Dong J H, et al. Effect of residual dissolved oxygen on the corrosion behavior of low carbon steel in 0.1 M NaHCO3 solution [J]. J. Mater. Sci. Technol., 2018, 34: 1349
doi: 10.1016/j.jmst.2017.11.004
|
14 |
Wan H X, Liu C L, Wang Z A, et al. Corrosion behavior of P110S oil casing steel in sulfur containing environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 371
|
|
万红霞, 刘重麟, 王子安 等. P110S油套管在微含硫环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 371
doi: 10.11902/1005.4537.2022.126
|
15 |
Froment F, Tournié A, Colomban P. Raman identification of natural red to yellow pigments: ochre and iron-containing ores [J]. J. Raman Spectrosc., 2008, 39: 560
doi: 10.1002/jrs.v39:5
|
16 |
Makkar N S, Casida Jr L E. Cupriavidus necator gen. nov., sp. nov.; a nonobligate bacterial predator of bacteria in Soil [J]. Int. J. Syst. Bacteriol., 1987, 37: 323
doi: 10.1099/00207713-37-4-323
|
17 |
Khan M A, Yadav S, Sharma R, et al. Augmentation of stimulated Pelomonas aquatica dispersible granules enhances remediation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) contaminated soil [J]. Environ. Technol. Innov., 2020, 17: 100594
doi: 10.1016/j.eti.2019.100594
|
18 |
Gevertz D, Telang A J, Voordouw G, et al. Isolation and characterization of strains CVO and FWKO B, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine [J]. Appl. Environ. Microbiol., 2000, 66: 2491
doi: 10.1128/AEM.66.6.2491-2501.2000
|
19 |
Schwartz E, Henne A, Cramm R, et al. Complete nucleotide sequence of pHG1: a Ralstonia eutropha H16 megaplasmid encoding key enzymes of H2-based lithoautotrophy and anaerobiosis [J]. J. Mol. Biol., 2003, 332: 369
doi: 10.1016/s0022-2836(03)00894-5
pmid: 12948488
|
20 |
Tuteja N. Mechanisms of high salinity tolerance in plants [J]. Methods Enzymol., 2007, 428: 419
|
21 |
Dorman S E G, Hoff B K, Reid T A, et al. The effect of Ralstonia pickettii on environmental fatigue crack growth of 7xxx series aluminum alloys [J]. Adv. Mater. Res., 2014, 891/892: 224
|
22 |
Jia R, Yang D Q, Xu J, et al. Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation [J]. Corros. Sci., 2017, 127: 1
doi: 10.1016/j.corsci.2017.08.007
|
23 |
Ress J, Monrrabal G, Díaz A, et al. Microbiologically influenced corrosion of welded AISI 304 stainless steel pipe in well water [J]. Eng. Fail. Anal., 2020, 116: 104734
doi: 10.1016/j.engfailanal.2020.104734
|
24 |
Wu J J, Gao J Y, Zhang D, et al. Microbial communities present on mooring chain steels with different copper contents and corrosion rates [J]. J. Oceanol. Limnol., 2020, 38: 378
doi: 10.1007/s00343-019-8366-8
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|