Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (2): 295-302    DOI: 10.11902/1005.4537.2023.095
Current Issue | Archive | Adv Search |
Research Progress on Life-extension of Gun Barrel Based on Coating Modification
LI Shuo1, LI Xichao1, ZHAO Jingxiang1,2,3, DAI Zuoqiang1, XU Bin2,3, SUN Mingyue2,3, ZHENG Lili1()
1.College of Mechanical and Electrical Engineering, Power Integration and Energy Storage System Engineering Technology Center, National and Local Joint Engineering Technology Center of Intelligent Power Integration Technology for Electric Vehicles (Qingdao), Qingdao University, Qingdao 266071, China
2.Shenyang National Research Center of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Key Laboratory of Nuclear Materials and Safety Evaluation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

LI Shuo, LI Xichao, ZHAO Jingxiang, DAI Zuoqiang, XU Bin, SUN Mingyue, ZHENG Lili. Research Progress on Life-extension of Gun Barrel Based on Coating Modification. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 295-302.

Download:  HTML  PDF(8343KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Although the relevant performance indicators of various artillery equipment have been significantly improved in recent years, the development of artillery is still limited by the service life of gun barrel. Nowadays, improving the firepower and extending the service life of artillery have become a hotspot for researchers. Therefore, more strict requirements are put forward on the ablation- and wear-resistance of the gun barrel, which has been the focus of the study on the longevity of the gun barrel. It is an effective method to improve the performance and to prolong the service life of the gun barrel by changing the material and the structure of the gun barrel. The development and recent advances in coating modification of gun barrel bore are summarized in this paper, and the performance requirements and modification related problems of the gun barrel bore are pointed out. The research progress and properties of Cr coating, Ta coating and new ceramic coatings are introduced emphatically. Then, advantages and disadvantages of various coatings are comparatively analyzed so that to provide reference for further research on life extension technology for gun barrel. Besides, the significant improvement the resistance to ablation, oxidation and wear of coatings prepared by electroplating and magnetron sputtering are introduced emphatically. The comprehensive analysis shows that the Cr coating and Ta coating prepared by electroplating and magnetron sputtering respectively have good resistance to ablation, oxidation and wear, which are the current and future research hotspots. Meanwhile, the new ceramic materials also show their advantages, namely, they present properties similar to the previous two coatings. It is also the development direction of surface modification of gun barrel bore in the future.

Key words:  artillery      tube life      interior surface modification      Cr coating      Ta coating      ceramic coating     
Received:  28 March 2023      32134.14.1005.4537.2023.095
ZTFLH:  TJ304  
Fund: National Natural Science Foundation of China(52001179);Natural Science Foundation of Shandong Province(ZR2020ME019)
Corresponding Authors:  ZHENG Lili, E-mail: llzheng@qdu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.095     OR     https://www.jcscp.org/EN/Y2024/V44/I2/295

Fig.1  Main measures to prolong the life of gun barrels[9]
Fig.2  Cross-section images of Cr (a), Cr-YSZ (b), Cr-CNT (c) and Cr-YSZ-CNT (d) coatings[20]
Fig.3  XRD patterns of MPPMS deposited tantalum coatings with different thicknesses on stainless steel[21]
Fig.4  Cross-sectional (a,c) and surface (b,d) micrographs of MPP deposited tantalum coatings with the thicknesses of 2 μm (a, b) and 20 μm (c, d) on stainless steel[21]
Type of coatingNumber of thermal shock cycleHeating temperature / oCHolding time / minFailure mode
TiAlN15700305% cracking
TiAlVN21700305% cracking
Table 1  Comparison of thermal shock resistance of TiAlN and TiAlVN coatings[36]
Fig.5  Photos of TiAlN (a) and TiAlVN (b) coatings after 15 thermal shock cycles[36]
Fig.6  Macroscopic morphologies of PCrNi3Mo steel (a) and CrAlN coating (b)[38]
1 Xu J, Bo Y C. Teaching reform and practice for the course of automatic mechanism construction design[J]. Equip. Manuf. Technol., 2011, (9): 244
徐 健, 薄玉成. 《自动机结构设计》课程教学改革与实践[J]. 装备制造技术, 2011, (9): 244
2 Zhang X Y. Artillery Design Theory[M]. Beijing: Beijing Institute of Technology Press, 2005
张相炎. 火炮设计理论[M]. 北京: 北京理工大学出版社, 2005
3 Warrender J M, Mulligan C P, Underwood J H. Analysis of thermo-mechanical cracking in refractory coatings using variable pulse-duration laser pulse heating[J]. Wear, 2007, 263: 1540
doi: 10.1016/j.wear.2007.02.017
4 Li X L, Zang Y, Mu L, et al. Erosion analysis of machine gun barrel and lifespan prediction under typical shooting conditions[J]. Wear, 2020, 444/445: 203177
5 Feng G T. Study on flow field with gas leakage and temperature field of chromiun-plating barrel[D]. Nanjing: Nanjing University of Science and Technology, 2017
冯国铜. 镀铬枪管带泄漏的膛内流场与管壁温度场研究[D]. 南京: 南京理工大学, 2017
6 Vigilante G N, Underwood J H, Crayon D. Use of the instrumented bolt and constant displacement bold-loaded specimen to measure in-situ hydrogen crack growth in high-strength steels[J]. Fatigue Fract. Mech., 1999, 30: 377
7 Gong C H, Yang Y F, Huang L H. Modern artillery bore erosion wear mechanism and control measures[J]. J. Sichuan Ordnance, 2014, 35(11): 127
龚长红, 杨云飞, 黄林昊. 现代火炮炮膛烧蚀磨损机理及控制措施[J]. 四川兵工学报, 2014, 35(11): 127
8 Cote P J, Rickard C. Gas-metal reaction products in the erosion of chromium-plated gun bores[J]. Wear, 2000, 241: 17
doi: 10.1016/S0043-1648(00)00311-2
9 Mao B Q, Zhao Q J, Bai X H, et al. Review and prospect of life extension technology for gun barrels[J]. Acta Armamentarii, 2023, 44: 638
毛保全, 赵其进, 白向华 等. 火炮身管延寿技术研究现状与展望[J]. 兵工学报, 2023, 44: 638
10 Guo Z J. Chemical Vapor deposition technology and material preparation[J]. Low Carbon World, 2017, (27): 288
郭展郡. 化学气相沉积技术与材料制备[J]. 低碳世界, 2017, (27): 288
11 Cui Y H, Hu Z C, Ma Y D, et al. Porous nanostructured ZrO2 coatings prepared by plasma spraying[J]. Surf. Coat. Technol., 2019, 363: 112
doi: 10.1016/j.surfcoat.2019.02.059
12 Wang W R, Qi W, Xie L, et al. Microstructure and corrosion behavior of (CoCrFeNi)95Nb5 high-entropy alloy coating fabricated by plasma spraying[J]. Materials, 2019, 12: 694
doi: 10.3390/ma12050694
13 Zeng X A, Huang H, Zhang W, et al. Effect of arc current on microstructure and mechanical properties of Cr coatings deposited by multi-arc ion plating[J]. Rare Met. Cemented Carbides, 2017, 45(5): 53
曾小安, 黄 鹤, 张 文 等. 弧电流对多弧离子镀纯Cr涂层组织性能的影响[J]. 稀有金属与硬质合金, 2017, 45(5): 53
14 Pan C H, Jeng H A, Lai C H. Biomarkers of oxidative stress in electroplating workers exposed to hexavalent chromium[J]. J. Expo. Sci. Environ. Epidemiol., 2018, 28: 76
doi: 10.1038/jes.2016.85
15 Tu Z, Yang Z, Zhang J, et al. Cathode polarization in trivalent chromium plating[J]. Plat. Surf. Finish., 2014, 80: 79
16 Shaat M. Effects of processing force on performance of nano-resonators produced by magnetron sputtering deposition[J]. Physica, 2018, 104E: 42
17 Peled E, Gileadi E. Electroplating of aluminum from aromatic hydrocarbons[J]. Plat. Surf. Finish., 1975, 62: 342
18 Hamid Z A, Ghayad I M, Ibrahim K M. Electrodeposition and characterization of chromium-tungsten carbide composite coatings from a trivalent chromium bath[J]. Surf. Interface Anal., 2005, 37: 573
doi: 10.1002/(ISSN)1096-9918
19 Liu B, Zeng Z X, Lin Y M. Mechanical properties of hard Cr-MWNT composite coatings[J]. Surf. Coat. Technol., 2009, 203: 3610
doi: 10.1016/j.surfcoat.2009.05.035
20 Shukla P, Awasthi S, Ramkumar J, et al. Protective trivalent Cr-based electrochemical coatings for gun barrels[J]. J. Alloy. Compd., 2018, 768: 1039
doi: 10.1016/j.jallcom.2018.07.170
21 Sterling M, Lin J L, Souza R M, et al. The β to α phase transition of tantalum coatings deposited by modulated pulsed power magnetron sputtering[J]. Surf. Coat. Technol., 2013, 214: 38
doi: 10.1016/j.surfcoat.2012.10.061
22 Wang S, Xiong D S, Li J L, et al. Wear and erosion resistance properties of electroplating ta coating in molten salt[J]. China Surf. Eng., 2015, 28(2): 101
王 升, 熊党生, 李建亮 等. 熔盐电镀钽及其耐磨损烧蚀性能[J]. 中国表面工程, 2015, 28(2): 101
23 Sopok S, Rickard C, Dunn S. Thermal-chemical-mechanical gun bore erosion of an advanced artillery system part one: theories and mechanisms[J]. Wear, 2005, 258: 659
doi: 10.1016/j.wear.2004.09.031
24 Sopok S, Rickard C, Dunn S. Thermal-chemical-mechanical gun bore erosion of an advanced artillery system part two: modeling and predictions[J]. Wear, 2005, 258: 671
doi: 10.1016/j.wear.2004.09.030
25 Hu Z W, Li Z K, Zhang X M. New developments and applications of tantalum and tantalum alloys[J]. Rare Met. Lett., 2004, 23(7): 8
胡忠武, 李中奎, 张小明. 钽及钽合金的工业应用和进展[J]. 稀有金属快报, 2004, 23(7): 8
26 Guo R P, Wang B S. New development of coating processes for gun barrels anti-erosion in America[J]. New Technol. New Process, 2008, (9): 87
郭瑞萍, 王宝生. 美国炮管抗烧蚀涂层工艺技术新进展[J]. 新技术新工艺, 2008, (9): 87
27 Matson D W, McClanahan E D, Lee S L, et al. Properties of thick sputtered Ta used for protective gun tube coatings[J]. Surf. Coat. Technol., 2001, 146/147: 344
28 Chen H B, Chen D J, LI Z S, et al. Microstructure and properties of Ta coatings rapidly deposited by magnetron sputtering[J]. J. Ordnance Equip. Eng., 2018, 39(11): 156
陈汉宾, 陈大军, 李忠盛 等. 磁控溅射快速沉积钽涂层的组织及性能[J]. 兵器装备工程学报, 2018, 39(11): 156
29 de Rosset W S, Audino M J. Advanced gun barrel materials and manufacturing technology symposium-overview and perspective[J]. Mater. Manuf. Processes, 2006, 21: 571
doi: 10.1080/10426910600611151
30 Liu H J, Hu C, Liu Z R, et al. Research on structure, mechanical and high-temperature properties of Zr and Cr doped TiAlN coatings[J]. J. Cent. South Univ. (Sci. Technol.), 2020, 51: 3178
刘慧君, 胡 春, 刘喆人 等. Zr和Cr掺杂TiAlN涂层结构、力学和高温性能研究[J]. 中南大学学报(自然科学版), 2020, 51: 3178
31 Wang J T, Liu P, Li W, et al. Research progress of TiAlN hard coating[J]. Hot Work. Technol., 2010, 39(20): 104
王均涛, 刘 平, 李 伟 等. TiAlN硬质涂层的研究进展[J]. 热加工工艺, 2010, 39(20): 104
32 Zhang H P, Wang S R, Guo P Q. Research progress of TiAlN-based thin films[J]. Mater. Mech. Eng., 2013, 37(4): 1
张海平, 王守仁, 郭培全. TiAlN 基薄膜的研究进展[J]. 机械工程材料, 2013, 37(4): 1
33 Kutschej K, Fateh N, Mayrhofer P H, et al. Comparative study of Ti1-XAlX N coatings alloyed with Hf, Nb and B[J]. Surf. Coat. Technol., 2005, 200: 113
doi: 10.1016/j.surfcoat.2005.02.072
34 Fox-Rabinovich G S, Yamomoto K, Veldhuis S C, et al. Tribological adaptability of TiAlCrN PVD coatings under high performance dry machining conditions[J]. Surf. Coat. Technol., 2005, 200: 1804
doi: 10.1016/j.surfcoat.2005.08.057
35 Miletić A, Panjan P, Škorić B, et al. Microstructure and mechanical properties of nanostructured Ti-Al-Si-N coatings deposited by magnetron sputtering[J]. Soc. Coat. Technol., 2014, 241: 105
36 Wang X. Study on the preparation and properties of TiAlVN films by magnetron sputtering on the surface of gun steel[D]. Shenyang: Shenyang University of Technology, 2017
王 新. 炮钢表面磁控溅射制备TiAlVN膜层及性能的研究[D]. 沈阳: 沈阳工业大学, 2017
37 Riedle H, Tillmann W, Grisales D, et al. Influence of substrate pre-treatments on residual stresses and tribo-mechanical properties of TiAlN-based PVD coatings[J]. Surf. Coat. Technol., 2014, 260: 369
doi: 10.1016/j.surfcoat.2014.08.075
38 Jin H, Li D Y, Guo C A, et al. Study on mechanical property and microstructure of CrAlN coatings on PCrNi3Mo steel deposited by magnetron sputtering[J]. Foundry Technol., 2015, 36: 1467
金 浩, 李德元, 郭策安 等. PCrNi3Mo钢表面磁控溅射CrAlN涂层的结构及力学性能分析[J]. 铸造技术, 2015, 36: 1467
[1] REN Yan, QIAN Yuhai, ZHANG Xintao, XU Jingjun, ZUO Jun, LI Meishuan. Effect of Thermal Shock on Mechanical Properties of Siliconized Graphite with ZrB2-SiC-La2O3/SiC Coating[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[2] CHEN Chao,LIANG Yanfen,LIANG Tianquan,MAN Quanyan,LUO Yidong,ZHANG Xiuhai,ZENG Jianmin. Research Progress on Hot Corrosion of Rare Earth Oxides Co-doped ZrO2 Ceramic Coatings in Molten Na2SO4+NaVO3 Salts[J]. 中国腐蚀与防护学报, 2019, 39(4): 291-298.
[3] Bo YANG,Maodong LI,Guangming LIU,Yuankui WANG,Kangsheng LIU,Wei ZHAI,Jianhang HUANG. Hot Corrosion Behavior of Inconel 625/NiCr Coating Prepared by HOVF[J]. 中国腐蚀与防护学报, 2016, 36(5): 483-488.
[4] LONG Yingchun, LI Wenfang, ZHANG Guoge, YU Fei. INFLUENCE OF ADDITIVE ON PREPARATION OF BLACK CERAMIC COATING ON ALUMINUM ALLOY BY MICRO-ARC OXIDATION METHOD[J]. 中国腐蚀与防护学报, 2012, 32(5): 388-392.
[5] LI Shoubiao, XU Likun, SHEN Chengjin, LI Xiangbo. PERFORMANCE OF EROSION-RESISTANT CERAMIC COATINGS DEPOSITED BY PLASMA SPRAYING[J]. 中国腐蚀与防护学报, 2011, 31(3): 196-201.
[6] Zhongping Yao; Zhaohua Jiang; Shigang Xin; Xuetong Sun; Xuelin Zhang; Zhendong Wu. EFFECTS OF MICRO-PLASMA OXIDATION COATINGS ON THE CORROSION RESISTANCE OF TC4 ALLOY[J]. 中国腐蚀与防护学报, 2005, 25(4): 222-225 .
[7] Bailing Jiang; Xianfeng Zhang. GROWTH PROCESS AND CORROSION RESISTANCE OF CERAMIC COATINGS FORMED BY MICRO-ARC OXIDATION ON MAGNESIUM ALLOY[J]. 中国腐蚀与防护学报, 2005, 25(2): 97-101 .
[8] Qing Li; Yan Chen. Stuey on Corrosion Resistance and Affecting Factors of Metal Ceramic Coating[J]. 中国腐蚀与防护学报, 2000, 20(3): 167-176 .
[9] TANG Zhao-lin WANG Fu-hui WU Wei-tao(State Key Laboratory for Corrosion and Protection; Institute of Corrosion and Protection of Metals; Young Scientists Lab of Surface Engineering; Chinese Academy of Sciences; Shenyang 110015). EFFECT OF TiAlCr COATING ON OXIDATION RESISTANCE OF TiAl INTERMETALLICS[J]. 中国腐蚀与防护学报, 1998, 18(1): 35-40.
[10] Chu Shuangjie (Shanghai Jiaotong University)Jiang Danyu; Yang Zheng(Northwestern Polytechnical University). OXIDATION RESISTANCE OF CERAMIC COATING PREPARED BY PLASMA SPRAYING ON THE SURFACE OF CARBON/CARBON COMPOSITES[J]. 中国腐蚀与防护学报, 1995, 15(2): 145-150.
No Suggested Reading articles found!