Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (3): 289-297    DOI: 10.11902/1005.4537.2020.097
Current Issue | Archive | Adv Search |
Research Progress on Sulfate-reducing Bacteria Induced Corrosion of Steels
MA Gang, GU Yanhong, ZHAO Jie()
Beijing Key Laboratory of Key Technologies and Equipment for Deepwater Oil and Gas Pipelines, School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
Download:  HTML  PDF(1303KB) 
Export:  BibTeX | EndNote (RIS)      

The research status on the matter of corrosion and protection related with sulfate-reducing bacteria (SRB) induced corrosion of steels in recent years was reviewed, and the formation process of anaerobic biofilm and its influence on steel corrosion were summarized. Based on this, the relevant mechanisms of SRB induced corrosion of metallic materials were introduced, including cathode depolarization mechanism, metabolite corrosion mechanism, Fe/FeS micro battery mechanism, etc. The role of extracellular polymer substances (EPS) resulted from SRB metabolism in the corrosion process of metallic materials was analyzed, and the synergistic effect of SRB with aerobic iron-oxidizing bacteria (IOB), typical corrosive anions (Cl-/SO42-), elastic stress and acid gas CO2 was introduced in detail. Finally, the common anti-corrosion methods and the latest research progress in SRB corrosion research were also systematically summarized, so as to provide a reference for subsequent SRB corrosion and protection.

Key words:  microbiologically influenced corrosion (MIC)      sulfate-reducing bacteria (SRB)      extracellular polymer substances (EPS)      synergistic effect      corrosion control     
Received:  08 June 2020     
ZTFLH:  TG174  
Fund: Natural Science Foundation of Beijing(3192013)
Corresponding Authors:  ZHAO Jie     E-mail:
About author:  ZHAO Jie, E-mail:

Cite this article: 

MA Gang, GU Yanhong, ZHAO Jie. Research Progress on Sulfate-reducing Bacteria Induced Corrosion of Steels. Journal of Chinese Society for Corrosion and protection, 2021, 41(3): 289-297.

URL:     OR

Fig.1  Formation and growth of biofilm[28,29]
1 Guan F, Zhai X F, Duan J Z, et al. Progress on influence of cathodic polarization on sulfate-reducing bacteria induced corrosion [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 1
管方, 翟晓凡, 段继周等. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展 [J]. 中国腐蚀与防护学报, 2018, 38: 1
2 Huang Y, Liu S J, Jiang C Y. Microbiologically influenced corrosion and mechanisms [J]. Microbiol. China, 2017, 44: 1699
黄烨, 刘双江, 姜成英. 微生物腐蚀及腐蚀机理研究进展 [J]. 微生物学通报, 2017, 44: 1699
3 Xiong F P, Wang J L, Ahmed A F, et al. Research progress of sulfate-reducing bacteria induced SCC [J]. Corros. Sci. Prot. Technol., 2018, 30: 213
熊福平, 王军磊, Ahmed A F等. 硫酸盐还原菌诱导应力腐蚀开裂研究进展 [J]. 腐蚀科学与防护技术, 2018, 30: 213
4 Li X G, Zhang D W, Liu Z Y, et al. Materials science: Share corrosion data [J]. Nature, 2015, 527: 441
5 Xu P, Ren H Y, Wang C Z, et al. Research progress on mixture microbial corrosion and analytical method on metal surface [J]. Surf. Technol., 2019, 48(1): 216
许萍, 任恒阳, 汪长征等. 金属表面混合微生物腐蚀及分析方法研究进展 [J]. 表面技术, 2019, 48(1): 216
6 Tewary N K, Kundu A, Nandi R, et al. Microstructural characterisation and corrosion performance of old railway girder bridge steel and modern weathering structural steel [J]. Corros. Sci., 2016, 113: 57
7 Wu M, Guo Z W, Xie F, et al. Corrosion behavior of pipeline steel under anions and sulfate-reducing bacteria: A review [J]. Mater. Rep., 2018, 32: 3435
吴明, 郭紫薇, 谢飞等. 阴离子和硫酸盐还原菌作用下管线钢腐蚀行为的研究进展 [J]. 材料导报, 2018, 32: 3435
8 Deng S Y, Qiu Q H. Status and prospects of bio-corrosion of steel in China [J]. Surf. Technol., 2019, 48(8): 239
邓绍云, 邱清华. 我国钢材生物腐蚀研究现状与展望 [J]. 表面技术, 2019, 48(8): 239
9 Liu J, Fan H B, Xu H P, et al. Corrosive electrochemical behavior of carbon steelin microbiological medium [J]. Electrochemistry, 2016, 8(2): 186
刘靖, 范洪波, 徐海平等. 碳钢在微生物介质中的腐蚀电化学行为 [J]. 电化学, 2016, 8(2): 186
10 Ma L, Xie J F, Xiong M X, et al. Effect of sulfate reducing bacteria on pitting behavior of carbon steel in H2S environment [J]. Corros. Prot., 2018, 39: 555
马磊, 谢俊峰, 熊茂县等. H2S环境中硫酸盐还原菌对碳钢点蚀行为的影响 [J]. 腐蚀与防护, 2018, 39: 555
11 Zheng M L. Study on the effect of SRB on the carbon steel’s corrosion [D]. Tianjin: Civil Aviation University of China, 2015
郑美露. 硫酸盐还原菌对碳钢腐蚀行为的研究 [D]. 天津: 中国民航大学, 2015
12 Fan M M, Liu H F, Dong Z H. Microbiologically influenced corrosion of X60 carbon steel in CO2-saturated oilfield flooding water [J]. Mater. Corros., 2013, 64: 242
13 Ge L, Wu M, Xie F, et al. Influence of sulfate reducing bacteria growth process on corrosion behavior of X70 steel [J]. Mater. Mechan. Eng., 2016, 40(8): 94
葛岚, 吴明, 谢飞等. 硫酸盐还原菌的生长过程对X70钢腐蚀行为的影响 [J]. 机械工程材料, 2016, 40(8): 94
14 Zhai F T, Li H H, Xu C M. Corrosion behavior of 2507 duplex stainless steel in cooling water with different SRB content [J]. Hot Work. Technol., 2016, 45(18): 105
翟芳婷, 李辉辉, 胥聪敏. 2507双相不锈钢在含硫酸盐还原菌冷却水中的腐蚀 [J]. 热加工工艺, 2016, 45(18): 105
15 Ohashi K, Kobayashi R, Stott J F D, et al. Marine crevice corrosion of stainless steel alloys under biofilmed and sterile conditions [A]. Corrosion 2016 [C]. Vancouver, British Columbia, Canada2016
16 Lv M Y, Li Z X, Du M, et al. Formation, function and evolution of biofilm in microbiologically influenced corrosion [J]. Surf. Technol., 2019, 48(11): 59
吕美英, 李振欣, 杜敏等. 微生物腐蚀中生物膜的生成、作用与演变 [J]. 表面技术, 2019, 48(11): 59
17 Videla H A, Herrera L K. Understanding microbial inhibition of corrosion. A comprehensive overview [J]. Int. Biodeterior. Biodegrad., 2009, 63: 896
18 Guo Z W, Guo N, Liu T, et al. Microbial corrosion inhibition mechanism and biomineralization mechanism [J]. Surf. Technol., 2018, 47(2): 144
郭章伟, 郭娜, 刘涛等. 微生物抑制腐蚀机理及生物矿化机理研究进展 [J]. 表面技术, 2018, 47(2): 144
19 Xu P, Zhai Y J, Wang J, et al. New perspective into biofilm: Research progress in microbially influence corrosion and measures prevention [J]. Corros. Sci. Prot. Technol., 2016, 28: 356
许萍, 翟羽佳, 王婧等. 从新的视角理解生物膜——微生物防腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2016, 28: 356
20 Yuan S J, Liang B, Zhao Y, et al. Surface chemistry and corrosion behaviour of 304 stainless steel in simulated seawater containing inorganic sulphide and sulphate-reducing bacteria [J]. Corros. Sci., 2013, 74: 353
21 Wu Y N. The exploration of the antibacterial corrosion resistance of cuprous oxide-based composite coating [D]. Wuhan: Huazhong University of Science and Technology, 2016
吴亚楠. 基于氧化亚铜的复合涂层的抗菌防腐性能探究 [D]. 武汉: 华中科技大学, 2016
22 Liu C P, Han X. Influence of sulfide ion on steel corrosion in CO2 containing sewage water [J]. Ind. Water Treat., 2019, 39(5): 57
刘春平, 韩霞. 含CO2油田采出水中S2-对碳钢腐蚀行为的影响 [J]. 工业水处理, 2019, 39(5): 57
23 Qi Y, Li J, Liang R, et al. Chemical additives affect sulfate reducing bacteria biofilm properties adsorbed on stainless steel 316L surface in circulating cooling water system [J]. Front. Environ. Sci. Eng., 2017, 11: 143
24 Shu Y, Yan M C, Wei Y H, et al. Characteristics of SRB biofilm and microbial corrosion of X80 pipeline steel [J]. Acta Metall. Sin., 2018, 54: 1408
舒韵, 闫茂成, 魏英华等. X80管线钢表面SRB生物膜特征及腐蚀行为 [J]. 金属学报, 2018, 54: 1408
25 Xiang L B, Zhang J C, Liu X R, et al. Microbiological influenced corrosion and microbiological influenced corrosion inhibition—overview and a case application in oilfield produced water [J]. Corros. Sci. Prot. Technol., 2019, 31: 85
向龙斌, 张吉昌, 刘心蕊等. 微生物腐蚀与采出水的微生物防腐蚀—回顾与应用实例 [J]. 腐蚀科学与防护技术, 2019, 31: 85
26 Yang J D, Xu F L, Hou J, et al. Research progress in microbial corrosion of metal materials and its prevention [J]. Equip. Environ. Eng., 2015, 12(1): 59
杨家东, 许凤玲, 侯健等. 金属材料的微生物腐蚀与防护研究进展 [J]. 装备环境工程, 2015, 12(1): 59
27 Enning D, Garrelfs J. Corrosion of iron by sulfate-reducing bacteria: new views of an old problem [J]. Appl. Environ. Microbiol., 2014, 80: 1226
28 Liu H W, Xu D K, Wu Y N, et al. Research progress in corrosion of steels induced by sulfate reducing bacteria [J]. Corros. Sci. Prot. Technol., 2015, 27: 409
刘宏伟, 徐大可, 吴亚楠等. 微生物生物膜下的钢铁材料腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2015, 27: 409
29 Liu H W, Liu H F. Research progress of corrosion of steels induced by iron oxidizing bacteria [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 195
刘宏伟, 刘宏芳. 铁氧化菌引起的钢铁材料腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2017, 37: 195
30 Blenkinsopp S A, Khoury A E, Costerton J W. Electrical enhancement of biocide efficacy against Pseudomonas aeruginosa biofilms [J]. Appl. Environ. Microbiol., 1992, 58: 3770
31 Xu P, Si S, Zhang Y J, et al. Effect of Extracellular Polymeric Substances (EPS) on anti-corrosion behavior of metals [J]. Corros. Prot., 2016, 37: 384
许萍, 司帅, 张雅君等. 微生物胞外聚合物(EPS)对金属耐蚀性的影响 [J]. 腐蚀与防护, 2016, 37: 384
32 Boukhalfa H, Reilly S D, Michalczyk R, et al. Iron(III) coordination properties of a pyoverdin siderophore produced by pseudomonas putida ATCC 33015 [J]. Inorg. Chem., 2006, 45: 5607
33 Dong Z H, Liu T F, Liu H F. Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion [J]. Biofouling, 2011, 27: 487
34 Shi X B, Xu D K, Yan M C, et al. Study on microbiologically influenced corrosion behavior of novel Cu-bearing pipeline steels [J]. Acta Metall. Sin., 2017, 53: 153
史显波, 徐大可, 闫茂成等. 新型含Cu管线钢的微生物腐蚀行为研究 [J]. 金属学报, 2017, 53: 153
35 Zhang L, Han J L, Zhu M J, et al. Corrosion and protection of sulfate reducing bacteria to metals in marine environment [J]. China Water Trans., 2017, 17(2): 93
张力, 韩金陆, 祝孟洁等. 海洋环境中硫酸盐还原菌对金属的腐蚀及防护 [J]. 中国水运, 2017, 17(2): 93
36 Li X, Du M. Research progress effect of cathodic polarization on microorganism influenced corrosion [J]. Corros. Sci. Prot. Technol., 2017, 29: 561
李霞, 杜敏. 阴极极化对微生物腐蚀的影响研究进展 [J]. 腐蚀科学与防护技术, 2017, 29: 561
37 Cai F. Effect of sulfate reducing bacteria on casing corrosion and its control technology [J]. Construct. Mater. Decorat., 2019, (21): 146
蔡峰. 硫酸盐还原菌对油田套管腐蚀的影响及控制技术 [J]. 建材与装饰, 2019, (21): 146
38 Xia J, Xu D K, Nan L, et al. Study on mechanisms of microbiologically influenced corrision of metal from the perspective of bio-electrochemistry and bio-energetics [J]. Chin. J. Mater. Res., 2016, 30(3): 161
夏进, 徐大可, 南黎等. 从生物能量学和生物电化学角度研究金属微生物腐蚀的机理 [J]. 材料研究学报, 2016, 30(3): 161
39 Liu D, Dong H, Bishop M E, et al. Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium [J]. Geobiology, 2012, 10: 150
40 Liu D, Yang C T, Zhou E Z, et al. Progress in microbiologically influenced corrosion of metallic materials in marine environment [J]. Surf. Technol., 2019, 48(7): 166
刘丹, 杨纯田, 周恩泽等. 海洋用金属材料的微生物腐蚀研究进展 [J]. 表面技术, 2019, 48(7): 166
41 Enning D, Venzlaff H, Garrelfs J, et al. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust [J]. Environ. Microbiol., 2012, 14: 1772
42 Liu H W, Fu C Y, Gu T Y, et al. Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water [J]. Corros. Sci., 2015, 100: 484
43 Sun F Y, Yang X, Cao B. Effect of SRB+IOB on corrosion behavior of X100 pipeline steel in simulated solution of Yingtan soil [J]. Mater. Rep., 2019, 33(): 373
孙福洋, 杨旭, 曹博. SRB+IOB对X100管线钢在鹰潭土壤模拟溶液中腐蚀行为的影响 [J]. 材料导报, 2019, 33(): 373
44 Zheng M L. Effect of anions in soil on microbial corrosion of X70 Steel [J]. Shandong Ind. Technol., 2015, (7): 224
郑美露. 土壤中阴离子对X70钢微生物腐蚀的影响 [J]. 山东工业技术, 2015, (7): 224
45 Xin Z, Yu Y, Wang Y C, et al. Effect of Cl- concentration on Corrosion Behavior of 316L stainless steel in sulfate reducing bacteria system [J]. Mater. Prot., 2014, 47(5): 57
辛征, 于勇, 王元春等. Cl-浓度对硫酸盐还原菌体系中316L不锈钢腐蚀行为的影响 [J]. 材料保护, 2014, 47(5): 57
46 Zhang Q, Zhao X D, Li Q C, et al. Effect of Cl- concentration on corrosion behavior of Q235 steel in solution containing sulfate reducing bacteria [J]. Mechan. Eng., 2017, (6): 8
张倩, 赵晓栋, 李庆超等. Cl-浓度对Q235钢在含有硫酸盐还原菌的溶液中腐蚀行为的影响 [J]. 机械工程师, 2017, (6): 8
47 Meng Z J, Wu W L, Qi J H, et al. Analysis of the influence of wellbore environmental factors to SRB growth and corrosion [J]. Petrochem. Ind. Appl., 2015, 34(1): 13
孟章进, 吴伟林, 祁建杭等. 井筒环境因素对SRB生长及腐蚀影响分析 [J]. 石油化工应用, 2015, 34(1): 13
48 Wu T Q, Zhou Z F, Wang X M, et al. Bacteria assisted cracking of X80 pipeline steel under the actions of elastic and plastic stresses [J]. Surf. Technol., 2019, 48(7): 285
吴堂清, 周昭芬, 王鑫铭等. 弹塑性应力作用下X80管线钢的菌致开裂行为 [J]. 表面技术, 2019, 48(7): 285
49 Wang D, Xie F, Wu M, et al. Effect of sulfate reducing bacteria on stress corrosion cracking behavior of X80 steel [J]. Trans. Mater. Heat Treat., 2016, 37(5): 198
王丹, 谢飞, 吴明等. 硫酸盐还原菌对X80钢应力腐蚀开裂行为的影响 [J]. 材料热处理学报, 2016, 37(5): 198
50 Wu T Q, Xu J, Yan M C, et al. Synergistic effect of sulfate-reducing bacteria and elastic stress on corrosion of X80 steel in soil solution [J]. Corros. Sci., 2014, 83: 38
51 Liu H W, Zhang F, Wu Y N, et al. Inhibition behavior of dodecylamine inhibitor in oilfield produced water containing saturated CO2 and SRB [J]. Corros. Prot., 2015, 36: 137
刘宏伟, 张帆, 吴亚楠等. 油田产出水中饱和CO2和SRB共存条件下十二胺缓蚀剂的缓蚀行为 [J]. 腐蚀与防护, 2015, 36: 137
52 Chen X, Gao F J, Song W Q, et al. Effects of CO2 on SRB influenced corrosion behavior of X70 steel in near-neutral pH solution [J]. Corros. Sci. Prot. Technol., 2017, 29: 103
陈旭, 高凤娇, 宋武琦等. CO2对X70钢在近中性pH值溶液中硫酸盐还原菌腐蚀行为的影响 [J]. 腐蚀科学与防护技术, 2017, 29: 103
53 Liu F L. Analysis of factors influencing corrosion of water injection system in block a of Jilin Oilfield [J]. Petrol. Knowledge, 2019, (4): 44
刘凤兰. 吉林油田A区块注水系统腐蚀影响因素分析 [J]. 石油知识, 2019, (4): 44
54 Liu L Y, Zhang X M, Li L, et al. Application of ultrasound sterilization technique in food industry [J]. Food Sci., 2006, 27: 778
刘丽艳, 张喜梅, 李琳等. 超声波杀菌技术在食品中的应用 [J]. 食品科学, 2006, 27: 778
55 Chen B, Liu H W, Wu Y N, et al. Influence of static magnetic field on microbiologically induced corrosion of Cu-Zn alloy in SRB culture medium [J]. ECS Trans., 2014, 59: 439
56 Chen B. The formation and corrosion electrochemical behavior of SRB biofilm in static magnetic field [D]. Wuhan: Huazhong University of Science and Technology, 2014
陈碧. 静磁场下SRB生物膜形成及腐蚀电化学行为 [D]. 武汉: 华中科技大学, 2014
57 Li K J, Zheng B J, Chen B, et al. Effect of magnetic field on microbiologically-influenced corrosion behavior of Q235 steel [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 463
李克娟, 郑碧娟, 陈碧等. 磁场对Q235钢微生物腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2013, 33: 463
58 Li J J, Liu Y M, Zhang X W, et al. Mechanism of metal corrosion caused by sulfate-reducing bacteria in the reinjection water in oilfields and its prevention and cure [J]. Ind. Water Treat., 2007, 27(11): 4
李家俊, 刘玉民, 张香文等. 油田回注水中硫酸盐还原菌对金属腐蚀的机理及其防治方法 [J]. 工业水处理, 2007, 27(11): 4
59 Xin Z. Effect of environmental factors on corrosion behavior of 316L stainless steel in medium containing sulfate reducing bacteria [D]. Yantai: Yantai University, 2014
辛征. 环境因素对含硫酸盐还原菌介质中316L不锈钢腐蚀行为的影响 [D]. 烟台: 烟台大学, 2014
60 Li Y Q. Present situation and development trend of fungicides used in oil field production system [J]. Chem. Eng. Des. Commun., 2016, 42(6): 21
李延庆. 油田生产系统用杀菌剂的现状及发展趋势 [J]. 化工设计通讯, 2016, 42(6): 21
61 Liu H W, Liu H F, Qin S, et al. Investigation of biomineralization induced by sulfate reducing bacteria in sewage gathering pipelines in oilfield [J]. Corros. Sci. Prot. Technol., 2015, 27: 7
刘宏伟, 刘宏芳, 秦双等. 集输管线硫酸盐还原菌诱导生物矿化作用调查 [J]. 腐蚀科学与防护技术, 2015, 27: 7
62 Kan T T, Dong B H, Zhang H, et al. Performance evaluation of the CFD corrosion inhibitor [J]. Appl. Chem. Ind., 2014, 43(): 115
阚涛涛, 董宝辉, 张环等. CFD油田缓蚀剂的筛选与性能评价 [J]. 应用化工, 2014, 43(): 115
63 Wang G, Duan L D, Wang H, et al. Selection and performance evaluation of corrosion inhibitor for carbon steel in oilfield produced water [J]. J. Yangtze Univ. (Nat. Sci. Ed.), 2019, 16(5): 41
王贵, 段立东, 王欢等. 油田采出水中碳钢腐蚀缓蚀剂的筛选与性能评价 [J]. 长江大学学报(自然科学版), 2019, 16(5): 41
64 Guo J K, Huang M H, Ma Y L. Research on the action of sulfate reducing bacteria and heterotrophic nitrification bacteria on the corrosion of 304 stainless steel [J]. Ind. Water Treat., 2016, 36(12): 70
郭军科, 黄美慧, 马有良. 硫酸盐还原菌和异养硝化菌对304不锈钢腐蚀研究 [J]. 工业水处理, 2016, 36(12): 70
65 Zong Y, Xie F, Wu M, et al. Research progress in influencing factors of corrosion by sulfate-reducing bacteria and corresponding antisepsis techniques [J]. Surf. Technol., 2016, 45(3): 24
宗月, 谢飞, 吴明等. 硫酸盐还原菌腐蚀影响因素及防腐技术的研究进展 [J]. 表面技术, 2016, 45(3): 24
66 Ding Q M, Fan Y M, Zhang Y F. Study on the cathodic protection criteria applicability of X80 steel in seawater solution containing SRB [J]. J. Marin. Sci., 2016, 34(3): 19
丁清苗, 范玥铭, 张迎芳. X80钢在含有SRB的海水溶液中阴极保护准则适用性 [J]. 海洋学研究, 2016, 34(3): 19
67 Li Y. Study on the antibacterial mechanism of cathodic polarization [D]. Dalian: Dalian University of Technology, 2013
李雨. 阴极极化的抑菌机理研究 [D]. 大连: 大连理工大学, 2013
68 Hong D H, Cao G Z, Qu J L, et al. Antibacterial activity of Cu2O and Ag co-modified rice grains-like ZnO nanocomposites [J]. J. Mater. Sci. Technol., 2018, 34: 2359
[1] LU Shuang, REN Zhengbo, XIE Jinyin, LIU Lin. Investigation of Corrosion Inhitibion Behavior of 2-aminobenzothiazole and Benzotriazole on Copper Surface[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[2] Ying YANG, Cui LIN, Xiaobin ZHAO, Yifei ZHANG. Initial Stage Cavitation-corrosion of TA2 in Aqueous LiBr Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 540-546.
[3] Yongqi TAO,Gang LIU,Yesheng LI,Zhixiang ZENG. Corrosion Wear Properties of 2024 Al-Alloy in Artificial Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 587-594.
[4] Manlu ZHANG,Jingmao ZHAO. Research Progress of Synergistic Inhibition Effect and Mechanism[J]. 中国腐蚀与防护学报, 2016, 36(1): 1-10.
[5] Lijuan FENG,Kangwen ZHAO,Huaiyu YANG,Nan TANG,Fuhui WANG,Tie SHANGGUAN. Synergistic Effect of Inhibitors of an Imidazoline Derivative and Tetraethylenepentamine on Corrosion Inhibition of Steel Rebar in an Artifial Concrete Pore Solution[J]. 中国腐蚀与防护学报, 2015, 35(4): 297-304.
[6] FENG Lijuan,ZHAO Kangwen,TANG Nan,YANG Huaiyu,WANG Fuhui,SHANGGUAN Tie. Inhibition and Synergistic Effect of Mixtures of Oxygen-containing Organic Compounds with Sodium Dodecyl Benzene Sulfate on Steel Rebar Corrosion in 3.5%NaCl Saturated Ca(OH)2 Solution[J]. 中国腐蚀与防护学报, 2013, 33(6): 441-448.
[7] ZHAO Jingmao,CHEN Guohao. Synergistic Inhibition Mechanism of Imidazoline and Thiourea in CO2 Corrosive System[J]. 中国腐蚀与防护学报, 2013, 33(3): 226-230.
[8] DU Nan, SHU Weifa, WANG Chunxia, WANG Shuaixing, CHEN Qinglong. FUNCTION OF A COMBINATORIAL ADDITIVE ON ALKALINE NON-CYANIDE ZINC PLATING[J]. 中国腐蚀与防护学报, 2012, 32(3): 251-255.
[10] ;. Study of influence by sulfate-reducing bacteria on formation of corrosion products on the surface of Q235 steel[J]. 中国腐蚀与防护学报, 2008, 28(5): 299-302 .
[13] Jiuqing Li. FRETTING CORROSIONWEARTRANSFERABILITY OF 316L STAINLESS STEEL[J]. 中国腐蚀与防护学报, 2001, 21(2): 88-94 .
[14] Yonghua Shu. Effect of NaCl Deposit and Water Vapor on the Corrosion Behavior of Pure Cr at 500-700℃[J]. 中国腐蚀与防护学报, 2000, 20(2): 88-96 .
No Suggested Reading articles found!