|
|
Research Progress on Sulfate-reducing Bacteria Induced Corrosion of Steels |
MA Gang, GU Yanhong, ZHAO Jie( ) |
Beijing Key Laboratory of Key Technologies and Equipment for Deepwater Oil and Gas Pipelines, School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China |
|
|
Abstract The research status on the matter of corrosion and protection related with sulfate-reducing bacteria (SRB) induced corrosion of steels in recent years was reviewed, and the formation process of anaerobic biofilm and its influence on steel corrosion were summarized. Based on this, the relevant mechanisms of SRB induced corrosion of metallic materials were introduced, including cathode depolarization mechanism, metabolite corrosion mechanism, Fe/FeS micro battery mechanism, etc. The role of extracellular polymer substances (EPS) resulted from SRB metabolism in the corrosion process of metallic materials was analyzed, and the synergistic effect of SRB with aerobic iron-oxidizing bacteria (IOB), typical corrosive anions (Cl-/SO42-), elastic stress and acid gas CO2 was introduced in detail. Finally, the common anti-corrosion methods and the latest research progress in SRB corrosion research were also systematically summarized, so as to provide a reference for subsequent SRB corrosion and protection.
|
Received: 08 June 2020
|
|
Fund: Natural Science Foundation of Beijing(3192013) |
Corresponding Authors:
ZHAO Jie
E-mail: zhaojie@bipt.edu.cn
|
About author: ZHAO Jie, E-mail: zhaojie@bipt.edu.cn
|
1 |
Guan F, Zhai X F, Duan J Z, et al. Progress on influence of cathodic polarization on sulfate-reducing bacteria induced corrosion [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 1
|
|
管方, 翟晓凡, 段继周等. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展 [J]. 中国腐蚀与防护学报, 2018, 38: 1
|
2 |
Huang Y, Liu S J, Jiang C Y. Microbiologically influenced corrosion and mechanisms [J]. Microbiol. China, 2017, 44: 1699
|
|
黄烨, 刘双江, 姜成英. 微生物腐蚀及腐蚀机理研究进展 [J]. 微生物学通报, 2017, 44: 1699
|
3 |
Xiong F P, Wang J L, Ahmed A F, et al. Research progress of sulfate-reducing bacteria induced SCC [J]. Corros. Sci. Prot. Technol., 2018, 30: 213
|
|
熊福平, 王军磊, Ahmed A F等. 硫酸盐还原菌诱导应力腐蚀开裂研究进展 [J]. 腐蚀科学与防护技术, 2018, 30: 213
|
4 |
Li X G, Zhang D W, Liu Z Y, et al. Materials science: Share corrosion data [J]. Nature, 2015, 527: 441
|
5 |
Xu P, Ren H Y, Wang C Z, et al. Research progress on mixture microbial corrosion and analytical method on metal surface [J]. Surf. Technol., 2019, 48(1): 216
|
|
许萍, 任恒阳, 汪长征等. 金属表面混合微生物腐蚀及分析方法研究进展 [J]. 表面技术, 2019, 48(1): 216
|
6 |
Tewary N K, Kundu A, Nandi R, et al. Microstructural characterisation and corrosion performance of old railway girder bridge steel and modern weathering structural steel [J]. Corros. Sci., 2016, 113: 57
|
7 |
Wu M, Guo Z W, Xie F, et al. Corrosion behavior of pipeline steel under anions and sulfate-reducing bacteria: A review [J]. Mater. Rep., 2018, 32: 3435
|
|
吴明, 郭紫薇, 谢飞等. 阴离子和硫酸盐还原菌作用下管线钢腐蚀行为的研究进展 [J]. 材料导报, 2018, 32: 3435
|
8 |
Deng S Y, Qiu Q H. Status and prospects of bio-corrosion of steel in China [J]. Surf. Technol., 2019, 48(8): 239
|
|
邓绍云, 邱清华. 我国钢材生物腐蚀研究现状与展望 [J]. 表面技术, 2019, 48(8): 239
|
9 |
Liu J, Fan H B, Xu H P, et al. Corrosive electrochemical behavior of carbon steelin microbiological medium [J]. Electrochemistry, 2016, 8(2): 186
|
|
刘靖, 范洪波, 徐海平等. 碳钢在微生物介质中的腐蚀电化学行为 [J]. 电化学, 2016, 8(2): 186
|
10 |
Ma L, Xie J F, Xiong M X, et al. Effect of sulfate reducing bacteria on pitting behavior of carbon steel in H2S environment [J]. Corros. Prot., 2018, 39: 555
|
|
马磊, 谢俊峰, 熊茂县等. H2S环境中硫酸盐还原菌对碳钢点蚀行为的影响 [J]. 腐蚀与防护, 2018, 39: 555
|
11 |
Zheng M L. Study on the effect of SRB on the carbon steel’s corrosion [D]. Tianjin: Civil Aviation University of China, 2015
|
|
郑美露. 硫酸盐还原菌对碳钢腐蚀行为的研究 [D]. 天津: 中国民航大学, 2015
|
12 |
Fan M M, Liu H F, Dong Z H. Microbiologically influenced corrosion of X60 carbon steel in CO2-saturated oilfield flooding water [J]. Mater. Corros., 2013, 64: 242
|
13 |
Ge L, Wu M, Xie F, et al. Influence of sulfate reducing bacteria growth process on corrosion behavior of X70 steel [J]. Mater. Mechan. Eng., 2016, 40(8): 94
|
|
葛岚, 吴明, 谢飞等. 硫酸盐还原菌的生长过程对X70钢腐蚀行为的影响 [J]. 机械工程材料, 2016, 40(8): 94
|
14 |
Zhai F T, Li H H, Xu C M. Corrosion behavior of 2507 duplex stainless steel in cooling water with different SRB content [J]. Hot Work. Technol., 2016, 45(18): 105
|
|
翟芳婷, 李辉辉, 胥聪敏. 2507双相不锈钢在含硫酸盐还原菌冷却水中的腐蚀 [J]. 热加工工艺, 2016, 45(18): 105
|
15 |
Ohashi K, Kobayashi R, Stott J F D, et al. Marine crevice corrosion of stainless steel alloys under biofilmed and sterile conditions [A]. Corrosion 2016 [C]. Vancouver, British Columbia, Canada2016
|
16 |
Lv M Y, Li Z X, Du M, et al. Formation, function and evolution of biofilm in microbiologically influenced corrosion [J]. Surf. Technol., 2019, 48(11): 59
|
|
吕美英, 李振欣, 杜敏等. 微生物腐蚀中生物膜的生成、作用与演变 [J]. 表面技术, 2019, 48(11): 59
|
17 |
Videla H A, Herrera L K. Understanding microbial inhibition of corrosion. A comprehensive overview [J]. Int. Biodeterior. Biodegrad., 2009, 63: 896
|
18 |
Guo Z W, Guo N, Liu T, et al. Microbial corrosion inhibition mechanism and biomineralization mechanism [J]. Surf. Technol., 2018, 47(2): 144
|
|
郭章伟, 郭娜, 刘涛等. 微生物抑制腐蚀机理及生物矿化机理研究进展 [J]. 表面技术, 2018, 47(2): 144
|
19 |
Xu P, Zhai Y J, Wang J, et al. New perspective into biofilm: Research progress in microbially influence corrosion and measures prevention [J]. Corros. Sci. Prot. Technol., 2016, 28: 356
|
|
许萍, 翟羽佳, 王婧等. 从新的视角理解生物膜——微生物防腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2016, 28: 356
|
20 |
Yuan S J, Liang B, Zhao Y, et al. Surface chemistry and corrosion behaviour of 304 stainless steel in simulated seawater containing inorganic sulphide and sulphate-reducing bacteria [J]. Corros. Sci., 2013, 74: 353
|
21 |
Wu Y N. The exploration of the antibacterial corrosion resistance of cuprous oxide-based composite coating [D]. Wuhan: Huazhong University of Science and Technology, 2016
|
|
吴亚楠. 基于氧化亚铜的复合涂层的抗菌防腐性能探究 [D]. 武汉: 华中科技大学, 2016
|
22 |
Liu C P, Han X. Influence of sulfide ion on steel corrosion in CO2 containing sewage water [J]. Ind. Water Treat., 2019, 39(5): 57
|
|
刘春平, 韩霞. 含CO2油田采出水中S2-对碳钢腐蚀行为的影响 [J]. 工业水处理, 2019, 39(5): 57
|
23 |
Qi Y, Li J, Liang R, et al. Chemical additives affect sulfate reducing bacteria biofilm properties adsorbed on stainless steel 316L surface in circulating cooling water system [J]. Front. Environ. Sci. Eng., 2017, 11: 143
|
24 |
Shu Y, Yan M C, Wei Y H, et al. Characteristics of SRB biofilm and microbial corrosion of X80 pipeline steel [J]. Acta Metall. Sin., 2018, 54: 1408
|
|
舒韵, 闫茂成, 魏英华等. X80管线钢表面SRB生物膜特征及腐蚀行为 [J]. 金属学报, 2018, 54: 1408
|
25 |
Xiang L B, Zhang J C, Liu X R, et al. Microbiological influenced corrosion and microbiological influenced corrosion inhibition—overview and a case application in oilfield produced water [J]. Corros. Sci. Prot. Technol., 2019, 31: 85
|
|
向龙斌, 张吉昌, 刘心蕊等. 微生物腐蚀与采出水的微生物防腐蚀—回顾与应用实例 [J]. 腐蚀科学与防护技术, 2019, 31: 85
|
26 |
Yang J D, Xu F L, Hou J, et al. Research progress in microbial corrosion of metal materials and its prevention [J]. Equip. Environ. Eng., 2015, 12(1): 59
|
|
杨家东, 许凤玲, 侯健等. 金属材料的微生物腐蚀与防护研究进展 [J]. 装备环境工程, 2015, 12(1): 59
|
27 |
Enning D, Garrelfs J. Corrosion of iron by sulfate-reducing bacteria: new views of an old problem [J]. Appl. Environ. Microbiol., 2014, 80: 1226
|
28 |
Liu H W, Xu D K, Wu Y N, et al. Research progress in corrosion of steels induced by sulfate reducing bacteria [J]. Corros. Sci. Prot. Technol., 2015, 27: 409
|
|
刘宏伟, 徐大可, 吴亚楠等. 微生物生物膜下的钢铁材料腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2015, 27: 409
|
29 |
Liu H W, Liu H F. Research progress of corrosion of steels induced by iron oxidizing bacteria [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 195
|
|
刘宏伟, 刘宏芳. 铁氧化菌引起的钢铁材料腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2017, 37: 195
|
30 |
Blenkinsopp S A, Khoury A E, Costerton J W. Electrical enhancement of biocide efficacy against Pseudomonas aeruginosa biofilms [J]. Appl. Environ. Microbiol., 1992, 58: 3770
|
31 |
Xu P, Si S, Zhang Y J, et al. Effect of Extracellular Polymeric Substances (EPS) on anti-corrosion behavior of metals [J]. Corros. Prot., 2016, 37: 384
|
|
许萍, 司帅, 张雅君等. 微生物胞外聚合物(EPS)对金属耐蚀性的影响 [J]. 腐蚀与防护, 2016, 37: 384
|
32 |
Boukhalfa H, Reilly S D, Michalczyk R, et al. Iron(III) coordination properties of a pyoverdin siderophore produced by pseudomonas putida ATCC 33015 [J]. Inorg. Chem., 2006, 45: 5607
|
33 |
Dong Z H, Liu T F, Liu H F. Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion [J]. Biofouling, 2011, 27: 487
|
34 |
Shi X B, Xu D K, Yan M C, et al. Study on microbiologically influenced corrosion behavior of novel Cu-bearing pipeline steels [J]. Acta Metall. Sin., 2017, 53: 153
|
|
史显波, 徐大可, 闫茂成等. 新型含Cu管线钢的微生物腐蚀行为研究 [J]. 金属学报, 2017, 53: 153
|
35 |
Zhang L, Han J L, Zhu M J, et al. Corrosion and protection of sulfate reducing bacteria to metals in marine environment [J]. China Water Trans., 2017, 17(2): 93
|
|
张力, 韩金陆, 祝孟洁等. 海洋环境中硫酸盐还原菌对金属的腐蚀及防护 [J]. 中国水运, 2017, 17(2): 93
|
36 |
Li X, Du M. Research progress effect of cathodic polarization on microorganism influenced corrosion [J]. Corros. Sci. Prot. Technol., 2017, 29: 561
|
|
李霞, 杜敏. 阴极极化对微生物腐蚀的影响研究进展 [J]. 腐蚀科学与防护技术, 2017, 29: 561
|
37 |
Cai F. Effect of sulfate reducing bacteria on casing corrosion and its control technology [J]. Construct. Mater. Decorat., 2019, (21): 146
|
|
蔡峰. 硫酸盐还原菌对油田套管腐蚀的影响及控制技术 [J]. 建材与装饰, 2019, (21): 146
|
38 |
Xia J, Xu D K, Nan L, et al. Study on mechanisms of microbiologically influenced corrision of metal from the perspective of bio-electrochemistry and bio-energetics [J]. Chin. J. Mater. Res., 2016, 30(3): 161
|
|
夏进, 徐大可, 南黎等. 从生物能量学和生物电化学角度研究金属微生物腐蚀的机理 [J]. 材料研究学报, 2016, 30(3): 161
|
39 |
Liu D, Dong H, Bishop M E, et al. Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium [J]. Geobiology, 2012, 10: 150
|
40 |
Liu D, Yang C T, Zhou E Z, et al. Progress in microbiologically influenced corrosion of metallic materials in marine environment [J]. Surf. Technol., 2019, 48(7): 166
|
|
刘丹, 杨纯田, 周恩泽等. 海洋用金属材料的微生物腐蚀研究进展 [J]. 表面技术, 2019, 48(7): 166
|
41 |
Enning D, Venzlaff H, Garrelfs J, et al. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust [J]. Environ. Microbiol., 2012, 14: 1772
|
42 |
Liu H W, Fu C Y, Gu T Y, et al. Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water [J]. Corros. Sci., 2015, 100: 484
|
43 |
Sun F Y, Yang X, Cao B. Effect of SRB+IOB on corrosion behavior of X100 pipeline steel in simulated solution of Yingtan soil [J]. Mater. Rep., 2019, 33(): 373
|
|
孙福洋, 杨旭, 曹博. SRB+IOB对X100管线钢在鹰潭土壤模拟溶液中腐蚀行为的影响 [J]. 材料导报, 2019, 33(): 373
|
44 |
Zheng M L. Effect of anions in soil on microbial corrosion of X70 Steel [J]. Shandong Ind. Technol., 2015, (7): 224
|
|
郑美露. 土壤中阴离子对X70钢微生物腐蚀的影响 [J]. 山东工业技术, 2015, (7): 224
|
45 |
Xin Z, Yu Y, Wang Y C, et al. Effect of Cl- concentration on Corrosion Behavior of 316L stainless steel in sulfate reducing bacteria system [J]. Mater. Prot., 2014, 47(5): 57
|
|
辛征, 于勇, 王元春等. Cl-浓度对硫酸盐还原菌体系中316L不锈钢腐蚀行为的影响 [J]. 材料保护, 2014, 47(5): 57
|
46 |
Zhang Q, Zhao X D, Li Q C, et al. Effect of Cl- concentration on corrosion behavior of Q235 steel in solution containing sulfate reducing bacteria [J]. Mechan. Eng., 2017, (6): 8
|
|
张倩, 赵晓栋, 李庆超等. Cl-浓度对Q235钢在含有硫酸盐还原菌的溶液中腐蚀行为的影响 [J]. 机械工程师, 2017, (6): 8
|
47 |
Meng Z J, Wu W L, Qi J H, et al. Analysis of the influence of wellbore environmental factors to SRB growth and corrosion [J]. Petrochem. Ind. Appl., 2015, 34(1): 13
|
|
孟章进, 吴伟林, 祁建杭等. 井筒环境因素对SRB生长及腐蚀影响分析 [J]. 石油化工应用, 2015, 34(1): 13
|
48 |
Wu T Q, Zhou Z F, Wang X M, et al. Bacteria assisted cracking of X80 pipeline steel under the actions of elastic and plastic stresses [J]. Surf. Technol., 2019, 48(7): 285
|
|
吴堂清, 周昭芬, 王鑫铭等. 弹塑性应力作用下X80管线钢的菌致开裂行为 [J]. 表面技术, 2019, 48(7): 285
|
49 |
Wang D, Xie F, Wu M, et al. Effect of sulfate reducing bacteria on stress corrosion cracking behavior of X80 steel [J]. Trans. Mater. Heat Treat., 2016, 37(5): 198
|
|
王丹, 谢飞, 吴明等. 硫酸盐还原菌对X80钢应力腐蚀开裂行为的影响 [J]. 材料热处理学报, 2016, 37(5): 198
|
50 |
Wu T Q, Xu J, Yan M C, et al. Synergistic effect of sulfate-reducing bacteria and elastic stress on corrosion of X80 steel in soil solution [J]. Corros. Sci., 2014, 83: 38
|
51 |
Liu H W, Zhang F, Wu Y N, et al. Inhibition behavior of dodecylamine inhibitor in oilfield produced water containing saturated CO2 and SRB [J]. Corros. Prot., 2015, 36: 137
|
|
刘宏伟, 张帆, 吴亚楠等. 油田产出水中饱和CO2和SRB共存条件下十二胺缓蚀剂的缓蚀行为 [J]. 腐蚀与防护, 2015, 36: 137
|
52 |
Chen X, Gao F J, Song W Q, et al. Effects of CO2 on SRB influenced corrosion behavior of X70 steel in near-neutral pH solution [J]. Corros. Sci. Prot. Technol., 2017, 29: 103
|
|
陈旭, 高凤娇, 宋武琦等. CO2对X70钢在近中性pH值溶液中硫酸盐还原菌腐蚀行为的影响 [J]. 腐蚀科学与防护技术, 2017, 29: 103
|
53 |
Liu F L. Analysis of factors influencing corrosion of water injection system in block a of Jilin Oilfield [J]. Petrol. Knowledge, 2019, (4): 44
|
|
刘凤兰. 吉林油田A区块注水系统腐蚀影响因素分析 [J]. 石油知识, 2019, (4): 44
|
54 |
Liu L Y, Zhang X M, Li L, et al. Application of ultrasound sterilization technique in food industry [J]. Food Sci., 2006, 27: 778
|
|
刘丽艳, 张喜梅, 李琳等. 超声波杀菌技术在食品中的应用 [J]. 食品科学, 2006, 27: 778
|
55 |
Chen B, Liu H W, Wu Y N, et al. Influence of static magnetic field on microbiologically induced corrosion of Cu-Zn alloy in SRB culture medium [J]. ECS Trans., 2014, 59: 439
|
56 |
Chen B. The formation and corrosion electrochemical behavior of SRB biofilm in static magnetic field [D]. Wuhan: Huazhong University of Science and Technology, 2014
|
|
陈碧. 静磁场下SRB生物膜形成及腐蚀电化学行为 [D]. 武汉: 华中科技大学, 2014
|
57 |
Li K J, Zheng B J, Chen B, et al. Effect of magnetic field on microbiologically-influenced corrosion behavior of Q235 steel [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 463
|
|
李克娟, 郑碧娟, 陈碧等. 磁场对Q235钢微生物腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2013, 33: 463
|
58 |
Li J J, Liu Y M, Zhang X W, et al. Mechanism of metal corrosion caused by sulfate-reducing bacteria in the reinjection water in oilfields and its prevention and cure [J]. Ind. Water Treat., 2007, 27(11): 4
|
|
李家俊, 刘玉民, 张香文等. 油田回注水中硫酸盐还原菌对金属腐蚀的机理及其防治方法 [J]. 工业水处理, 2007, 27(11): 4
|
59 |
Xin Z. Effect of environmental factors on corrosion behavior of 316L stainless steel in medium containing sulfate reducing bacteria [D]. Yantai: Yantai University, 2014
|
|
辛征. 环境因素对含硫酸盐还原菌介质中316L不锈钢腐蚀行为的影响 [D]. 烟台: 烟台大学, 2014
|
60 |
Li Y Q. Present situation and development trend of fungicides used in oil field production system [J]. Chem. Eng. Des. Commun., 2016, 42(6): 21
|
|
李延庆. 油田生产系统用杀菌剂的现状及发展趋势 [J]. 化工设计通讯, 2016, 42(6): 21
|
61 |
Liu H W, Liu H F, Qin S, et al. Investigation of biomineralization induced by sulfate reducing bacteria in sewage gathering pipelines in oilfield [J]. Corros. Sci. Prot. Technol., 2015, 27: 7
|
|
刘宏伟, 刘宏芳, 秦双等. 集输管线硫酸盐还原菌诱导生物矿化作用调查 [J]. 腐蚀科学与防护技术, 2015, 27: 7
|
62 |
Kan T T, Dong B H, Zhang H, et al. Performance evaluation of the CFD corrosion inhibitor [J]. Appl. Chem. Ind., 2014, 43(): 115
|
|
阚涛涛, 董宝辉, 张环等. CFD油田缓蚀剂的筛选与性能评价 [J]. 应用化工, 2014, 43(): 115
|
63 |
Wang G, Duan L D, Wang H, et al. Selection and performance evaluation of corrosion inhibitor for carbon steel in oilfield produced water [J]. J. Yangtze Univ. (Nat. Sci. Ed.), 2019, 16(5): 41
|
|
王贵, 段立东, 王欢等. 油田采出水中碳钢腐蚀缓蚀剂的筛选与性能评价 [J]. 长江大学学报(自然科学版), 2019, 16(5): 41
|
64 |
Guo J K, Huang M H, Ma Y L. Research on the action of sulfate reducing bacteria and heterotrophic nitrification bacteria on the corrosion of 304 stainless steel [J]. Ind. Water Treat., 2016, 36(12): 70
|
|
郭军科, 黄美慧, 马有良. 硫酸盐还原菌和异养硝化菌对304不锈钢腐蚀研究 [J]. 工业水处理, 2016, 36(12): 70
|
65 |
Zong Y, Xie F, Wu M, et al. Research progress in influencing factors of corrosion by sulfate-reducing bacteria and corresponding antisepsis techniques [J]. Surf. Technol., 2016, 45(3): 24
|
|
宗月, 谢飞, 吴明等. 硫酸盐还原菌腐蚀影响因素及防腐技术的研究进展 [J]. 表面技术, 2016, 45(3): 24
|
66 |
Ding Q M, Fan Y M, Zhang Y F. Study on the cathodic protection criteria applicability of X80 steel in seawater solution containing SRB [J]. J. Marin. Sci., 2016, 34(3): 19
|
|
丁清苗, 范玥铭, 张迎芳. X80钢在含有SRB的海水溶液中阴极保护准则适用性 [J]. 海洋学研究, 2016, 34(3): 19
|
67 |
Li Y. Study on the antibacterial mechanism of cathodic polarization [D]. Dalian: Dalian University of Technology, 2013
|
|
李雨. 阴极极化的抑菌机理研究 [D]. 大连: 大连理工大学, 2013
|
68 |
Hong D H, Cao G Z, Qu J L, et al. Antibacterial activity of Cu2O and Ag co-modified rice grains-like ZnO nanocomposites [J]. J. Mater. Sci. Technol., 2018, 34: 2359
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|