Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (6): 795-803    DOI: 10.11902/1005.4537.2020.230
Current Issue | Archive | Adv Search |
Case Analysis of Microbial Corrosion in Product Oil Pipeline
ZHANG Fei1, WANG Haitao2, HE Yongjun3, ZHANG Tiansui1, LIU Hongfang1()
1.Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2.China Special Equipment Inspection and Research Institute, Beijing 100029, China
3.SINOPEC Sales Co. Ltd. , (South China), Guangzhou 510000, China
Download:  HTML  PDF(7093KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The composition and acid-solubility characteristics of corrosion products in several product oil pipelines were investigated, and the content of bacteria related to microbiologically influenced corrosion of metal materials such as sulfate reducing bacteria (SRB) and iron bacteria (IOB) in corrosion products were cultured and determined by bacterial culture method. The corrosion behavior of X60 pipeline steel in SRB-containing medium was studied by means of electrochemical polarization curve measurement, alternating impedance method, corrosion mass loss method and surface analysis technology. The results show that SRB and IOB exist in most pipeline corrosion products, and the pipeline sediments consist mainly of Fe3O4, FeS, Fe(OH)3, and Fe2O3. The results of corrosion test in a simulated solution containing product oil and SRB bacterial revealed that a large number of loose and porous corrosion products and SRB bacterial aggregation were formed on the surface of X60 steel, while the corrosion degree was more serious than that of the blank control group. Moreover, the corrosion morphology of the steel showed pitting characteristics with pit depth up to 25.1 μm/14 d.

Key words:  internal corrosion of product oil pipeline      sulfate-reducing bacteria (SRB)      iron oxidized bacteria (IOB)      X60 carbon steel      microbiologically influenced corrosion (MIC)     
Received:  02 December 2020     
ZTFLH:  TG174  
Fund: China Petroleum & Chemical Corporation Project(319008-8)
Corresponding Authors:  LIU Hongfang     E-mail:  liuhf@hust.edu.cn
About author:  LIU Hongfang; E-mail: liuhf@hust.edu.cn

Cite this article: 

ZHANG Fei, WANG Haitao, HE Yongjun, ZHANG Tiansui, LIU Hongfang. Case Analysis of Microbial Corrosion in Product Oil Pipeline. Journal of Chinese Society for Corrosion and protection, 2021, 41(6): 795-803.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.230     OR     https://www.jcscp.org/EN/Y2021/V41/I6/795

SampleRate of acid insolubleCompositions analysisSRB content mLIOB content mL
Jianshui89%Fe3O4, FeS, Fe2O31.0×1051.0×103
Huanan78%Fe3O4, FeS1.0×1051.0×104
Maoming73.5%Fe3O4, FeS, Fe2O3, FeOOH1.0×1061.0×103
Kunming diesel63.5%Fe(OH)3, Fe2O3, FeOOHUndetected
Kunming gasoline89%Fe3O4
Table 1  Acid solution experiment, XRD composition analysis, microbial culture and bacterial content determination
Fig.1  XRD patterns of corrosion deposits in pipelines
Fig.2  SEM images of X60 steel samples immersed in SRB bacterial solution for 1 d (a), 3 d (b), 8 d (c) and 14 d (d)
Fig.3  Nyquist (a, b) and Bode (c, d) plots of X60 carbon steel in four different test systems: (a) medium, (b) medium contains oil, (c) SRB solution, (d) SRB solution contains oil
Fig.4  Equivalent circuit used to fit experimental impedance diagrams
ConditionRs / Ω·cm2Qf / 10-4 F·cm-2Qf-nRf / Ω·cm2Cdl / 10-2 F·cm-2Cdl-nRct / Ω·cm2Rp / Ω·cm2
Medium1 d8.241.52×10-40.942273482.71×10-40.8411535142699
3 d6.8472.15×10-40.946138873.11×10-30.927356217449
5 d7.0152.42×10-40.97884463.45×10-40.873937317819
8 d6.9153.12×10-40.945176798.59×10-40.943629823977
11 d7.743.49×10-40.949356768.23×10-40.9221179847474
14 d7.634.40×10-40.953472056.29×10-40.9781819365398
Oil-Medium1 d9.5391.74×10-40.943224102.82×10-40.8541483737247
3 d8.3622.12×10-40.94760212.15×10-40.871860014621
5 d8.3363.05×10-40.945112897.57×10-40.875401615305
8 d11.113.68×10-40.950336738.92×10-40.9551017743850
11 d10.724.39×10-40.943302373.94×10-40.9531525245489
14 d11.394.65×10-40.952392244.18×10-40.9381896658190
SRB solution1 d17.744.31×10-40.86684.21.19×10-60.21391449228.2
3 d11.159.44×10-30.811653.96.11×10-30.89135674220.9
5 d11.86.74×10-30.85617803.98×10-30.87271598939
8 d13.313.74×10-30.92479231.95×10-30.896374911672
11 d13.392.46×10-30.926108441.09×10-40.9131756528409
14 d13.732.19×10-30.925186025.14×10-40.9152116039762
Oil-SRB solution1 d18.18.01×10-30.95815027.53×10-50.3031180213304
3 d15.791.68×10-30.93443561.58×10-20.77312685624
5 d12.946.57×10-30.92165237.59×10-50.9751350020023
8 d14.515.25×10-30.92478436.07×10-50.9611479922642
11 d13.435.00×10-30.94933513.87×10-40.9761553018881
14 d13.974.58×10-30.98715769.81×10-40.9331754819124
Table 2  Electrochemical parameters fitted from EIS of X60 carbon steel in four test systems
Fig.5  Time-dependent changes of Rp of X60 carbon steel in different media
Fig.6  Polarization curves for X60 carbon steel in different solutions soaked after 14 d
Conditionβa / V·dec-1βc / V·dec-1Ecorr, SCE / VIcorr / A·cm-2
Medium64.36-41.663-0.7453.02×10-7
Medium contains oil18.69-38.11-0.7595.69×10-7
SRB solution177.12-46.142-0.8137.11×10-7
SRB solution contains oil225.24-43.497-0.9502.41×10-6
Table 3  Fitted results of polarization curves of X60 steel in different solutions soaked after 14 d
Fig.7  SEM images showing morphologies of the X60 steel immersed in the corrosion system: (a) medium, (b) medium contains oil, (c) SRB solution, (d) SRB solution contains oil
Fig.8  EDS analysis of corrosion products of X60 carbon steel soaked in two corrosion systems for 14 d: (a) medium, (b) medium contains oil, (c) SRB solution, (d) SRB solution contains oil
Fig.9  3D morphologies of X60 carbon steel after soaking for 14 d to remove corrosion products: (a) medium, (b) medium contains oil, (c) SRB solution, (d) SRB solution contains oil
Fig.10  Mass loss of X60 carbon steel in different solutions soaked after 14 d
1 Xiong K J. Study on two-phase flow characteristics of diesel oil carrying water [D]. Chengdu: Southwest Petroleum University, 2017
熊柯杰. 柴油携水两相流动特性研究 [D]. 成都: 西南石油大学, 2017
2 Qiao H F. Analysis of the status quo of refined oil pipeline corrosion and the design protection systems [D]. Xi’an: Xi'an Shiyou University, 2014
乔焕芳. 延-西成品油管线腐蚀现状的分析及防护系统的设计 [D]. 西安: 西安石油大学, 2014
3 Zhu Q Z, Duan P X, Wang H J, et al. Current situations and future development of oil and gas pipelines in the world [J]. Oil Gas Storage Trans., 2015, 34: 1262
祝悫智, 段沛夏, 王红菊等. 全球油气管道建设现状及发展趋势 [J]. 油气储运, 2015, 34: 1262
4 Wang D Z, Liu J H, Wang C X, et al. Test and analysis on sediment in Lanzhou-Chengdu-Chongqing products pipeline [J]. Oil Gas Storage Trans., 2005, 24(2): 59
王德增, 刘井会, 王彩霞等. 对成品油管道中沉积物的分析 [J]. 油气储运, 2005, 24(2): 59
5 Been J, Place T D, Holm M. Evaluating corrosion and inhibition under sludge in large diameter crude oil pipelines [A]. Proceedings of the Corrosion 2010 [C]. San Antonio, 2010, 756
6 Liu M, Jiang Y W, Han S, et al. Internal corrosion cause analysis of a products pipeline before putting into operation [J]. Corros. Sci. Prot. Technol., 2018, 30: 496
刘猛, 姜有文, 韩朔等. 成品油管道投产前内腐蚀原因分析 [J]. 腐蚀科学与防护技术, 2018, 30: 496
7 Yustina M P, Wolfgang W S, Tjandra S, et al. Evaluation of Bio-Corrosion on carbon steel by Bacillus Megaterium in biodiesel and diesel oil mixture [J]. J. Eng. Technol. Sci., 2020, 52: 370
8 Zhang Y, Li Y. Microbiological corrosion and protection of oil and gas pipeline [J]. Equip. Environ. Eng., 2008, 5(5): 45
张燕, 李颖. 输油气管线的微生物腐蚀与防护 [J]. 装备环境工程, 2008, 5(5): 45
9 Liu H W, Xu D K, Wu Y N, et al. Research progress in corrosion of steels induced by sulfate reducing bacteria [J]. Corros. Sci. Prot. Technol, 2015, 27: 409
刘宏伟, 徐大可, 吴亚楠等. 微生物生物膜下的钢铁材料腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2015, 27: 409
10 Liu H W, Liu H F, Qin S, et al. Investigation of biomineralization induced by sulfate reducing bacteria in sewage gathering pipelines in oilfield [J]. Corros. Sci. Prot. Technol, 2015, 27: 7
刘宏伟, 刘宏芳, 秦双等. 集输管线硫酸盐还原菌诱导生物矿化作用调查 [J]. 腐蚀科学与防护技术, 2015, 27: 7
11 Yu H H. Corrosion and corrosion protection of product oil tanks and long-distance pipelines [J]. Corros. Prot. Petrochem. Ind., 2013, 30(4): 17
余杭辉. 国内成品油储罐和长输管线腐蚀现状与防护 [J]. 石油化工腐蚀与防护, 2013, 30(4): 17
12 Liu L. Corrosion Behavior of Sulfate Reducing Bacteria in X52 Oil Pipeline [D]. Chengdu: Southwest Petroleum University, 2016
刘黎. X52输油管道硫酸盐还原菌腐蚀行为研究 [D]. 成都: 西南石油大学, 2016
13 Wang Z Q, Xu W C, Zhou Z Y, et al. Microbial corrosion behavior of X65 pipeline steel in product pipeline sediments [J]. Surf. Technol., 2020, 49(7): 245
王正泉, 徐玮辰, 周子扬等. X65管线钢在成品油管道沉积物中的微生物腐蚀行为 [J]. 表面技术, 2020, 49(7): 245
14 Jing J Q, Liu L, Xie J F, et al. Effect of sulfate reducing bacteria from corrosion scale of oil pipeline on corrosion behavior of Q235 steel [J]. Corros. Prot., 2018, 39(1): 6
敬加强, 刘黎, 谢俊峰等. 输油管道腐蚀垢样中硫酸盐还原菌对Q235钢腐蚀行为的影响 [J]. 腐蚀与防护, 2018, 39(1): 6
15 Song X Q, Yang Y X, Yu D L, et al. Studies on the impact of fluid flow on the microbial corrosion behavior of product oil pipelines [J]. J. Pet. Sci. Eng., 2016, 146: 803
[1] MA Gang, GU Yanhong, ZHAO Jie. Research Progress on Sulfate-reducing Bacteria Induced Corrosion of Steels[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
[2] ;. Study of influence by sulfate-reducing bacteria on formation of corrosion products on the surface of Q235 steel[J]. 中国腐蚀与防护学报, 2008, 28(5): 299-302 .
No Suggested Reading articles found!