|
|
Research Progress on Compatibility Between Alkalizing Agents and Materials in PWR Secondary Circuit |
JI Yuefei1,2, HAO Long1,2( ), WANG Jianqiu1,2,3, LI Qinghua4, ZHENG Yue4, YU Pei4, KE Wei1,3 |
1.Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3.Institute of Corrosion Science and Technology, Guangzhou 510700, China 4.China Nuclear Power Engineering Co., Ltd., Beijing 100083, China |
|
Cite this article:
JI Yuefei, HAO Long, WANG Jianqiu, LI Qinghua, ZHENG Yue, YU Pei, KE Wei. Research Progress on Compatibility Between Alkalizing Agents and Materials in PWR Secondary Circuit. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 267-277.
|
Abstract Impurities such as pipeline corrosion products and dissolved oxygen etc. in the secondary circuit of pressurized water reactor (PWR) can enter the steam generator through the water supply system and deposit at different positions, resulting in the decrease of heat transfer capacity and the instability of thermal and hydraulic system. The water chemistry control in secondary circuit of PWR is of great significance for a safe operation of system equipment and core components. The purpose of this work is to summarize the application of pH control agents at home and abroad, and the research progress in the compatibility between employed alkalizing agents and structural materials. Firstly, the development process in alkalizing agent for PWR secondary circuit and its application at home and abroad are detailed. Secondly, the factors influencing the compatibility between the employed alkalizing agents and structural materials are discussed from three aspects: structural materials, hydrochemistry and the physicochemical properties of alkalizing agents. Finally, the working mechanism of alkalizing agent in adjusting pH is discussed, especially the mechanism of interactions between amine molecules and the oxide scales formed on the surface of structural materials.
|
Received: 27 March 2023
32134.14.1005.4537.2023.090
|
|
Fund: Lingchuang Research Project of China National Nuclear Corporation |
Corresponding Authors:
HAO Long, E-mail: lhao@imr.ac.cn, chinahaolong@126.com
|
1 |
https://pris.iaea.org/PRIS/WorldStatistics/OperationalByAge.aspx
|
2 |
Zhang T K, Li M R, Yin W P. Report on the Development of China's Nuclear Energy (2022)[M]. Beijing: Social Sciences Academic Press, 2022: 1
|
|
张廷克, 李闽榕, 尹卫平. 中国核能发展报告(2022)[M]. 北京: 社会科学文献出版社, 2022: 1
|
3 |
Staehle R W, Gorman J A. Quantitative assessment of submodes of stress corrosion cracking on the secondary side of steam generator tubing in pressurized water reactors: part 1[J]. Corrosion, 2003, 59: 931
doi: 10.5006/1.3277522
|
4 |
Staehle R W. Bases for predicting the earliest penetrations due to SCC for Alloy 600 on the secondary side of PWR steam generators[R]. Washington: U.S. Nuclear Regulatory Commission, 2001
|
5 |
EPRI. Pressurized water reactor secondary water chemistry guidelines-revision 7[R]. Palo Alto: EPRI, 2009
|
6 |
Zhu Z P. Water Chemistry Condition and Optimization of PWR Nuclear Power Plant[M]. Beijing: Atomic Energy Press, 2010
|
|
朱志平. 压水堆核电厂水化学工况及优化[M]. 北京: 原子能出版社, 2010
|
7 |
Liu Z F, Wang Y L, Ji B X. The research and preparation of a slow-dissolved phosphate water treatment agent and its uses in boiler water treatment[J]. Ind. Water Treat., 1998, 18(5): 13
|
|
刘振法, 王育琳, 籍宝霞. 缓溶磷酸盐水处理剂的研制及在锅炉水处理中的应用[J]. 工业水处理, 1998, 18(5): 13
|
8 |
Lin G X, Guan S M. Status quo and development of the phosphate water chemistry conditions in heat power plants[J]. Ind. Water Treat., 2001, 21(8): 11
|
|
林根仙, 管淑敏. 火电厂磷酸盐水化学工况的现状与发展[J]. 工业水处理, 2001, 21(8): 11
doi: 10.11894/1005-829x.2001.21(8).11
|
9 |
Tatone O S, Pathania R S. Damage of heat transfer tubes of steam generators of water cooled reactors in 1980[J]. Nucl. Power Eng., 1984, 5(4): 88
|
|
Tatone O S, Pathania R S. 1980年水冷堆蒸汽发生器传热管破损情况[J]. 核动力工程, 1984, 5(4): 88
|
10 |
Zhou S K. Corrosion and protection of PWR steam generators[J]. Atomic Energy Sci. Technol., 1987, 21: 639
|
|
周寿康. 压水堆蒸汽发生器的腐蚀与防护[J]. 原子能科学技术, 1987, 21: 639
|
11 |
Li D R. PWR plant water chemistry and comparison with fossil power p1ants[J]. Power Eng., 1987, 7(1): 47|
|
|
励德荣. 压水反应堆核电站水化学工况以及与常规电站的比较[J]. 动力工程, 1987, 7(1): 47
|
12 |
Zhu Z P, Xiong S H, Jing L L, et al. Analysis on the characteristics of secondary water chemistry in PWR nuclear power plant[A]. Proceedings of Power Plant Chemistry 2009 Academic Annual Meeting and China Power Plant Chemistry Network Summit Forum[C]. Wuhan, 2009: 72
|
|
朱志平, 熊书华, 荆玲玲 等. 压水堆核电站二回路水化学工况特性分析[A]. 电厂化学2009学术年会暨中国电厂化学网高峰论坛论文集[C]. 武汉, 2009: 72
|
13 |
Hu R. Study on pH control scheme of secondary circuit of Sanmen nuclear power phase I project[J]. China High-Tech Enterp., 2015, (13): 15
|
|
胡 蓉. 三门核电一期工程二回路pH控制方案研究[J]. 中国高新技术企业, 2015, (13): 15
|
14 |
Xie Y. Research on chemical water treatment technology for nuclear power plants[A]. Proceedings of the 2007 Annual Academic Conference of the Chinese Nuclear Society[C]. Wuhan, 2007: 66
|
|
谢 严. 核电站化学水处理技术研究[A]. 中国核学会2007年学术年会论文摘要集[C]. 武汉, 2007: 66
|
15 |
Gipon E, Trevin S. Flow-accelerated corrosion in nuclear power plants[A]. Ritter S. Nuclear Corrosion: Research, Progress and Challenges[M]. Duxford : Woodhead Publishing, 2020: 213
|
16 |
Yu M. Study on mechanism of flow accelerated corrosion in nuclear power plants[J]. Ind. Sci. Trib., 2015, 14(10): 43
|
|
于 淼. 核电站流动加速腐蚀的机理研究[J]. 产业与科技论坛, 2015, 14(10): 43
|
17 |
Wang L L, Rao D L, Kuang B, et al. Pipeline wall thinning behavior of A335P11 steel under the condition of flow accelerated corrosion[J]. Corros. Prot., 2018, 39: 511
|
|
王亮亮, 饶德林, 匡 波 等. A335P11钢在流动加速腐蚀条件下的管壁减薄行为[J]. 腐蚀与防护, 2018, 39: 511
|
18 |
Pan D L, Si X D, Lyu J H. Effect of flow velocity on flow accelerated corrosion rate of carbon steel elbow[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1064
|
|
潘代龙, 司晓东, 吕金洪. 流速对碳钢弯管段流动加速腐蚀速率的影响[J]. 中国腐蚀与防护学报, 2023, 43: 1064
doi: 10.11902/1005.4537.2022.319
|
19 |
Turner C W. Implications of steam generator fouling on the degradation of material and thermal performance[A]. BusbyJ T, IlevbareG, AndresenP L. 15th International Conference on Environmental degradation of Materials in Nuclear Power Systems-Water Reactors[M]. Hoboken: Wiley, 2011: 2287
|
20 |
Jeon S H, Song G D, Hur D H. Micro-galvanic corrosion of steam generator materials within pores of magnetite flakes in alkaline solutions[J]. Metals, 2018, 8(11): 899
doi: 10.3390/met8110899
|
21 |
Fujiwara K, Kawamura H, Kanbe H, et al. Applicability of chemical cleaning process to steam generator secondary side, (I)[J]. J. Nucl. Sci. Technol., 2004, 41: 44
doi: 10.1080/18811248.2004.9715456
|
22 |
Zhao S X, Cao W R, Niu T T, et al. Investigation on application of organic amine in secondary circuit of PWR nuclear power plant[J]. Pop. Stand., 2022, (14): 132
|
|
赵守霞, 曹卫荣, 牛婷婷 等. 有机胺在压水堆核电厂二回路应用的调研[J]. 大众标准化, 2022, (14): 132
|
23 |
Prince A A M, Velmurugan S, Narasimhan S V, et al. Dissolution behaviour of magnetite film formed over carbon steel in dilute organic acid media[J]. J. Nucl. Mater., 2001, 289: 281
doi: 10.1016/S0022-3115(01)00425-1
|
24 |
Zuo M, Fan X M, He H H, et al. Research on water chemistry effect of nuclear power secondary loop morpholine and ethanol amine dosing conditions[J]. Guangdong Chem. Ind., 2012, 39(14): 50
|
|
左 萌, 范晓梅, 何汉华 等. 核电二回路吗啉与乙醇胺加药工况的水化学影响研究[J]. 广东化工, 2012, 39(14): 50
|
25 |
Cao S Y, Sun B D, Huang W Q, et al. Experiment on thermal decomposition characteristics of ETA and its application to secondary system of NPP[J]. Corros. Prot., 2012, 33: 1019
|
|
曹松彦, 孙本达, 黄万启 等. 乙醇胺的热稳定性试验及其在核电站二回路系统的应用[J]. 腐蚀与防护, 2012, 33: 1019
|
26 |
Miller A D. PWR Advanced amine application guidelines-revision 2[R]. Palo Alto: EPRI, 1997: 19
|
27 |
Tian M S. Analysis and optimization on secondary system water chemistry control mode of Qinshan nuclear power plant[J]. Corros. Prot., 2021, 42(6): 68
|
|
田民顺. 秦山核电站二回路系统水化学控制模式的分析和优化[J]. 腐蚀与防护, 2021, 42(6): 68
|
28 |
Zhao Y F, Wang J F, Ma W G, et al. Research on application characteristics of ethanolamine used in secondary system of nuclear power plants[J]. Nucl. Power Eng., 2014, 35(6): 167
|
|
赵永福, 王今芳, 马韦刚 等. 核电厂二回路乙醇胺的应用性能研究[J]. 核动力工程, 2014, 35(6): 167
|
29 |
Shen J. Research of ETA water chemistry treatment technology in secondary circuit of PWR plant[J]. Nucl. Power Eng., 2014, 35(6): 122
|
|
沈 君. 压水堆核电厂二回路ETA水化学处理研究[J]. 核动力工程, 2014, 35(6): 122
|
30 |
Wang H, Xie X J, He J, et al. On the application of ethanolamine in the secondary circuit of nuclear power plants[A]. Proceedings of the 2010 Academic Exchange Meeting of Hubei Province and Wuhan Society for Corrosion and Protection[C]. Wuhan, 2010: 43
|
|
王 浩, 谢学军, 何 洁 等. 关于乙醇胺在核电站二回路的应用[A]. 湖北省暨武汉腐蚀与防护学会2010年学术交流会论文集[C]. 武汉, 2010: 43
|
31 |
Cao S Y, Wang J F, Sun B D, et al. Adoptation of ethanolamine to inhibit flow-accelerated corrosion in secondary systems of nuclear power stations[J]. Therm. Power Gener., 2011, 40(1): 73
|
|
曹松彦, 王今芳, 孙本达 等. 采用乙醇胺抑制核电站二回路系统的流动加速腐蚀[J]. 热力发电, 2011, 40(1): 73
|
32 |
Mauricio C, Ivanna R, Narciso F, et al. Modifications in the secondary circuit chemistry control of embalse NPP[J]. Power Plant Chem., 2008, 10: 676
|
33 |
Zhao Y F, Jiang E, Gong B, et al. China nuclear power research and design institute. A new compound alkalizing agent and its application[P]. Chin Pat, 105417668A, 2016
|
|
赵永福, 姜 峨, 龚 宾 等. 一种复合碱化剂及其用途[P]. 中国专利, 105417668A, 2016
|
34 |
Zhao Y F, Jiang E, Gong B, et al. Feasibility study on combined application of ethanolamine and ammonia in the secondary circuit of nuclear power plant[J]. Electr. Power, 2019, 52(4): 127
|
|
赵永福, 姜 峨, 龚宾 等. 核电站二回路乙醇胺与氨复合应用可行性研究[J]. 中国电力, 2019, 52(4): 127
|
35 |
Song Y W, Zhu Z P, Zhou P, et al. Corrosion inhibition characteristics of 304L stainless steel under ETA+MPA water condition under simulated secondary circuit environment[J]. Atomic Energy Sci. Technol., 2021, 55: 2323
|
|
宋有为, 朱志平, 周 攀 等. 模拟二回路环境下乙醇胺与3-甲氧基丙胺复合水工况对304L不锈钢的缓蚀特性[J]. 原子能科学技术, 2021, 55: 2323
doi: 10.7538/yzk.2020.youxian.0874
|
36 |
Qin J H. The study of secondary water chemistry problem for Qinshan Ⅱ NPP[D]. Shanghai: Shanghai Jiao Tong University, 2008
|
|
秦建华. 秦山第二核电厂二回路水质问题及对策研究[D]. 上海: 上海交通大学, 2008
|
37 |
Joshi A C, Rufus A L, Suresh S, et al. Characterization of the oxide formed in the presence of poly acrylic acid over the steam generator structural materials of nuclear power plants[J]. J. Nucl. Mater., 2013, 437: 139
doi: 10.1016/j.jnucmat.2013.01.353
|
38 |
Betova I, Bojinov M, Saario T. Influence of dispersants on the corrosion and deposition processes in power plant coolant circuits[R]. Espoo: VTT Technical Research Centre of Finland, 2013
|
39 |
Cao L Y, Wang H, Xin C S. Influence of dispersant on corrosion behavior of structure materials in pressurized water reactor secondary side water conditions[J]. Corros. Prot., 2016, 37: 554
|
|
曹林园, 王 辉, 辛长胜. 模拟压水堆(PWR)二回路条件下添加分散剂对结构材料腐蚀行为的影响[J]. 腐蚀与防护, 2016, 37: 554
|
40 |
Song X Z, Zhu Z P, Zhou P, et al. Effect of polyacrylic acid on dispersion characteristics of corrosion product Fe3O4 in water of power plant and its mechanism[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 479
|
|
宋显志, 朱志平, 周 攀 等. 聚丙烯酸对Fe3O4的分散特性及其机理研究[J]. 中国腐蚀与防护学报, 2022, 42: 479
doi: 10.11902/1005.4537.2021.110
|
41 |
Kreider M, Miller A, Wilson L, et al. Dispersant for tube fouling control-volume 4: long-term trial at McGuire Unit 2: implementation and results (2005—2006)[R]. Palo Alto: EPRI, 2007
|
42 |
Betova I, Bojinov M, Saario T. Film-Forming Amines in Steam/Water Cycles: structure, properties, and influence on corrosion and deposition processes[R]. Espoo: VTT Technical Research Centre of Finland, 2014
|
43 |
Liu C S, Lin G X, Sun Y, et al. The maintenance technology of film-forming amine on the inner wall of the condenser drain pipe in the secondary circuit of the pressurized water reactor[J]. Nucl. Sci. Eng., 2021, 41: 727
|
|
刘灿帅, 林根仙, 孙 云 等. 压水堆二回路凝汽器母管内壁的成膜胺保养工艺研究[J]. 核科学与工程, 2021, 41: 727
|
44 |
Kukushkin A N, Czempik E, Kolomtsev Y V, et al. Secondary side water chemistry experience with octadecylamine and hydrazine treatment at WWER plants[R]. Berlin, Germany, 2008
|
45 |
Ramminger U, Fandrich J, Roumiguiére F M. Method for conditioning a power-generating circulatory system of a power plant[P]. US Pat, 20140102481A1, 2014
|
46 |
Song L J, Li X M, Zhang L F, et al. Effect of ethanolamine on corrosion performance of carbon steels[J]. Corros. Prot., 2015, 36: 828
|
|
宋利君, 李新民, 张乐福 等. 乙醇胺对碳钢腐蚀性能的影响[J]. 腐蚀与防护, 2015, 36: 828
|
47 |
Kuang W J, Mathews J A, Macdonald D D. The effect of Anodamine on the corrosion behavior of 1018 mild steel in deionized water: I. Immersion and polarization tests[J]. Electrochim. Acta, 2014, 127: 79
doi: 10.1016/j.electacta.2014.02.011
|
48 |
Wang L, Luo K J, Fang K W, et al. Uniform corrosion and flow accelerated corrosion rates of TU48C steel in different alkalizer solutions[J]. Mater. Mech. Eng., 2017, 41(8): 80
doi: 10.11973/jxgccl201708018
|
|
王 力, 罗坤杰, 方可伟 等. 在不同碱化剂溶液中TU48C钢的均匀腐蚀及流动加速腐蚀速率[J]. 机械工程材料, 2017, 41(8): 80
|
49 |
Raiman S S, Kurley J M, Sulejmanovic D, et al. Corrosion of 316H stainless steel in flowing FLiNaK salt[J]. J. Nucl. Mater., 2022, 561: 153551
doi: 10.1016/j.jnucmat.2022.153551
|
50 |
Li Z D, Cui Z D, Hou X Y, et al. Corrosion property of nuclear grade 316LN stainless steel weld joint in high temperature and high pressure water[J]. J. Chin. Soc. Corros. Prot., 2019, 39: 106
|
|
李兆登, 崔振东, 侯相钰 等. 核级316LN不锈钢焊接接头在高温高压水中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39: 106
doi: 10.11902/1005.4537.2018.023
|
51 |
Lin Z X, Dang Y, Xu Q, et al. Research on general corrosion of alloy 690 in primary and secondary loops of nuclear plants[J]. Mater. Rep., 2020, 34(): 437
|
|
林震霞, 党 莹, 徐 祺 等. 690合金在核电厂一、二回路工况下的均匀腐蚀性能研究[J]. 材料导报, 2020, 34(suppl.2) : 437
|
52 |
Zhu Z L, Ma C H, Li Y Y, et al. Oxidation behavior of nickel-based alloy Inconel617B in supercritical water at 700℃[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 655
|
|
朱忠亮, 马辰昊, 李宇旸 等. 镍基合金Inconel617B在700℃超临界水环境中的氧化行为研究[J]. 中国腐蚀与防护学报, 2022, 42: 655
doi: 10.11902/1005.4537.2021.145
|
53 |
Manjanna J, Rangarajan S, Velmurugan S V, et al. Surface analysis of Monel, Incoloy, and stainless steel exposed to ETA and LiOH at 150oC[J]. Corros. Prev. Control, 2002, 49: 18
|
54 |
Bosch R W, Féron D, Celis J P. Electrochemistry in Light Water Reactors: Reference Electrodes, Measurement, Corrosion and Tribocorrosion Issues[M]. Cambridge: Woodhead Publishing, 2007: 1
|
55 |
Wang J Z, Wang J Q, Han E H. Corrosion behavior of alloy 800 in NaOH and ETA solutions at 300 ℃[J]. Acta Metall. Sin., 2016, 52: 599
doi: 10.11900/0412.1961.2015.00490
|
|
王家贞, 王俭秋, 韩恩厚. 800合金在300℃NaOH和ETA溶液中的腐蚀行为[J]. 金属学报, 2016, 52: 599
doi: 10.11900/0412.1961.2015.00490
|
56 |
Yun G C, Cheng X Z. Pressurized Water Reactor Water Chemistry[M]. Harbin: Harbin Engineering University Press, 2009
|
|
云桂春, 成徐州. 压水反应堆水化学[M]. 哈尔滨: 哈尔滨工程大学出版社, 2009
|
57 |
Yin Y Y, Liu J F, Miao K J, et al. Effect of SO42- on corrosion of stainless steel in solutions containing Cl- [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 34
|
|
尹阳阳, 刘建峰, 缪克基 等. SO42-对不锈钢在含Cl-溶液中腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2022, 42: 34
doi: 10.11902/1005.4537.2020.234
|
58 |
Ning F Q, Tan J B, Wu X Q. Effects of 405 stainless steel on crevice corrosion behavior of Alloy 690 in high-temperature pure water[J]. J. Mater. Sci. Technol., 2020, 47: 76
doi: 10.1016/j.jmst.2020.02.004
|
59 |
Liu X C. Fretting corrosion behavior of Alloy 690TT heat transferring tube for steam generator under high temperature high pressure water[D]. Hefei: University of Science and Technology of China, 2019
|
|
柳星辰. 蒸汽发生器用690TT合金传热管高温高压水中的微动腐蚀行为研究[D]. 合肥: 中国科学技术大学, 2019
|
60 |
Zhu Z P, Zhao Y F, Zhou Y, et al. Electrochemical performance of alloy 690 under ETA and AVT water chemistry condition[J]. Corros. Sci. Prot. Technol., 2012, 24: 285
|
|
朱志平, 赵永福, 周 瑜 等. 690合金在ETA和AVT水工况下的电化学特性[J]. 腐蚀科学与防护技术, 2012, 24: 285
|
61 |
Jia W Y, Ren L, Xu J, et al. Study on the relationship between Fe3O4 fouling and NiFe2O4 oxide layer in the secondary circuit of nuclear steam generator[J]. Surf. Sci., 2022, 717: 122001
doi: 10.1016/j.susc.2021.122001
|
62 |
Zhang P Z, Chen T, Yan F H, et al. Study on general corrosion behaviors of Inconel690 in simulation environment with ETA/NH3 [J]. Atomic Energy Sci. Technol., 2015, 49: 518
|
|
张平柱, 陈 童, 严峰鹤 等. Inconel690在ETA/NH3水化学环境中的均匀腐蚀行为研究[J]. 原子能科学技术, 2015, 49: 518
doi: 10.7538/yzk.2015.49.03.0518
|
63 |
Eeden N V, Matthee F, Montshiwagae M. Experience and optimisation of ethanolamine treatment for a PWR secondary system[A]. International Conference on Water Chemistry of Nuclear Reactor Systems[C]. Paris, 2012
|
64 |
Galt K J, Caris N B. Ethanolamine experience at Koeberg nuclear power station, South Africa[A]. International Conference on Water Chemistry in Nuclear Reactors Systems[C]. Avignon, 2002
|
65 |
Cao L Y, Wang H, Yang M X, et al. Influence of alkalizer on corrosion behavior of structure material in pressurized water reactor secondary circuit[J]. Atomic Energy Sci. Technol., 2020, 54: 842
|
|
曹林园, 王 辉, 杨明馨 等. 压水堆二回路工况下碱化剂对结构材料腐蚀的影响[J]. 原子能科学技术, 2020, 54: 842
doi: 10.7538/yzk.2019.youxian.0367
|
66 |
Cai J P, Tian M S, He Y H, et al. Compatibility of ethanol amine (ETA) and materials in secondary circuit system of nuclear power plant[J]. Corros. Prot., 2019, 40: 485
|
|
蔡金平, 田民顺, 何艳红 等. 乙醇胺与核电厂二回路材料的相容性[J]. 腐蚀与防护, 2019, 40: 485
|
67 |
Rhee I H, Jung H, Cho D. Evaluation of pH control agents influencing on corrosion of carbon steel in secondary water chemistry condition of pressurized water reactor[J]. Nucl. Eng. Technol., 2014, 46: 431
doi: 10.5516/NET.09.2013.076
|
68 |
Zhu Z P, Yang L, Qiao Y, et al. Experimental study on gas-liquid partition coefficient and thermal decomposition characteristics of ethanolamine in high-temperature aqueous systems[J]. Electr. Power, 2018, 51(5): 128
|
|
朱志平, 杨 磊, 乔 越 等. 乙醇胺汽液分配系数及高温分解特性的试验研究[J]. 中国电力, 2018, 51(5): 128
|
69 |
Chexal B, Horowitz J, Dooley B. Flow-accelerated corrosion in power plants. Revision 1[R]. Palo Alto: EPRI, 1998
|
70 |
Kawamura H, Shoda Y, Terachi T, et al. PWR secondary water chemistry guidelines in Japan-Purpose and technical background[J]. Prog. Nucl. Energy, 2019, 114: 121
doi: 10.1016/j.pnucene.2019.01.027
|
71 |
Ren L, Wang S C, Xu J, et al. Fouling on the secondary side of nuclear steam generator tube: experimental and simulated study[J]. Appl. Surf. Sci., 2022, 590: 153143
doi: 10.1016/j.apsusc.2022.153143
|
72 |
Lee Y B, Lee J M, Hur D H, et al. Effects of advanced amines on magnetite deposition of steam generator tubes in secondary system[J]. Coatings, 2021, 11: 514
doi: 10.3390/coatings11050514
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|