Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (1): 82-90    DOI: 10.11902/1005.4537.2023.010
Current Issue | Archive | Adv Search |
Adsorption and Inhibition Action of Dodecyl Dimethyl Benzyl Ammonium Chloride on Cold-rolled Steel in Trichloroacetic Acid
ZHOU Da, LI Xianghong, LEI Ran, DENG Shuduan()
College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China
Cite this article: 

ZHOU Da, LI Xianghong, LEI Ran, DENG Shuduan. Adsorption and Inhibition Action of Dodecyl Dimethyl Benzyl Ammonium Chloride on Cold-rolled Steel in Trichloroacetic Acid. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 82-90.

Download:  HTML  PDF(4448KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion inhibition performance of the cationic surfactant dodecyl dimethyl lbenzyl ammonium chloride (1227) on cold rolled steel in 0.10 mol/L Cl3CCOOH trichloroacetic acid solution was investigated by mass loss measurement, electrochemical test, scanning electron microscopy (SEM), atomic force microscopy (AFM) and contact angle tester. The results show that 1227 can effectively suppress the corrosion of cold rolled steel in 0.10 mol/L Cl3CCOOH solution. The inhibition efficiency of 40 mg/L 1227 is as high as 97.4% at 20oC. The higher the corrosion inhibitor concentration, the higher the corrosion inhibition efficiency, and the higher the temperature, the lower the corrosion inhibition efficiency. The adsorption of 1227 on CRS surface follows Langmuir adsorption isotherm, and the type of adsorption is a mixture of physical and chemical adsorption while chemisorption as the main effect. The potentiodynamic polarization curve shows that 1227 can simultaneously inhibit both the cathodic- and anodic-reactions, and so 1227 is a mixed inhibitor and its action mechanism is "geometric covering effect". In the Nyquist diagram, along with the increase of 1227 concentration, the capacitance arc and the charge transfer resistance all increase, therewith, the inhibition effect increases. The result of SEM and AFM analysis proves also that 1227 can effectively retard the corrosion of the steel in Cl3CCOOH solution. The contact angle results show that the addition of 1227 enhances the hydrophobicity of CRS surface.

Key words:  dodecyl dimethyl benzyl ammonium chloride      inhibition      steel      trichloroacetic acid      adsorption     
Received:  14 January 2023      32134.14.1005.4537.2023.010
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(52161016);National Natural Science Foundation of China(51761036);Fundamental Research Project for Distinguished Young Scholars in Yunnan Province(202001AV070008);Special Project of "Top Young Talents" of Yunnan Ten Thousand Talents Plan(51900109);Special Project of "Industry Leading Talents" of Yunnan Ten Thousand Talents Plan(80201408)
Corresponding Authors:  DENG Shuduan, E-mail: dengshuduan@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.010     OR     https://www.jcscp.org/EN/Y2024/V44/I1/82

Fig.1  Relation curves between corrosion rate (v) and 1227 concentration (c) in 0.10 mol/L Cl3CCOOH solution
Fig.2  Relation curves between inhibition efficiency (ηw ) and 1227 concentration (c) in 0.10 mol/L Cl3CCOOH solution
Fig.3  Langmuir adsorption isotherm of 1227 on steel surface
Temperature / oCr2slopeK / L·mg-1
200.99981.033.40
300.99931.081.74
400.97271.090.15
500.94041.150.07
Table 1  Linear regression parameters for the fitted lines of c/θ-c
Fig.4  Fitted line of lnK and 1/T

Temperature

oC

ΔG0

kJ·mol-1

ΔH0

kJ·mol-1

ΔS0

J·mol-1·K-1

20-36.66-109.87-249.74
30-36.22-109.87-242.95
40-30.94-109.87-252.05
50-30.13-109.87-246.76
Table 2  Thermodynamic parameters of the adsorption of 1227 of steel surface in 0.10 mol/L Cl3CCOOH solution
Fig.5  Potentiodynamic polarization curves of cold rolled steel without and with different concentrations of 1227 in 0.10 mol/L Cl3CCOOH solution at 20oC
c / mg·L-1Ecorr / mVbc / mV·dec-1ba / mV·dec-1Icorr / μA·cm-2ηp / %
0-399-2041241125-
10-382-2404018983.2
50-371-20610118084.0
100-385-1878514886.8
Table 3  Fitted parameters of potentiodynamic polarization curves
Fig.6  Nyquist spectra (a), Bode modulus graphs (b) and Bode phase angle graphs (c) of steel in 0.10 mol/L Cl3CCOOH solution with different concentrations of 1227 at 20oC
Fig.7  Equivalent circuit diagrams: (a) R(QR)(LRL), (b) R(QR)
cRsRtRLQaCdlχ2ηR
mg·L-1Ω·cm2Ω·cm2Ω·cm2μΩ-1·S a ·cm-2μF·cm-2%
09.78.011.323230.93972233.5 × 10-3-
1011.3137.1-1460.7871502.5 × 10-394.1
5012.1365.9-1470.7018462.4 × 10-397.8
10011.7409.8-1790.7079573.6 × 10-398.0
Table 4  EIS parameters of cold rolled steel in 0.10 mol/L Cl3CCOOH solutions with different 1227 concentrations at 20oC
Fig.8  SEM microscopic image of steel sheet surface: (a) polished surface, (b) after corrosion in 0.10 mol/L Cl3CCOOH solution for 6 h at 20oC, (c) after corrosion in 100 mg/L 1227 + 0.10 mol/L Cl3CCOOH solution for 6 h at 20oC
Fig.9  3D-AFM microscopic images of steel sheet surfaces: (a) polished surface, (b) after corrosion in 0.10 mol/L Cl3CCOOH solution for 6 h at 20oC, (c) after corrosion in 100 mg/L 1227 + 0.10 mol/L Cl3CCOOH solution for 6 h at 20oC
SteelRa / nmRq / nmRmax / nm
Before immersion1.812.3619.2
Cl3CCOOH15.319.1134
Cl3CCOOH+122716.922.1172
Table 5  Surface rough parameters of 3D-AFM micrographs of steel surfaces
Fig.10  Analysis of contact angles of steel sheet surface: (a) polished surface, (b) after corrosion in 0.10 mol/L Cl3CCOOH solution for 6 h at 20oC, (c) after corrosion in 100 mg/L 1227 + 0.10 mol/L Cl3CCOOH solution for 6 h at 20oC
Fig.11  Schematic diagram of 1227 adsorption on steel surface
1 Hou B R, Lu D Z. Corrosion cost and preventive strategies in China [J]. Bull. Chin. Acad. Sci., 2018, 33: 601
侯保荣, 路东柱. 我国腐蚀成本及其防控策略 [J]. 中国科学院院刊, 2018, 33: 601
2 Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China [J]. npj Mater. Degrad., 2017, 1: 4
doi: 10.1038/s41529-017-0005-2
3 Finšgar M, Jackson J. Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: a review [J]. Corros. Sci., 2014, 86: 17
doi: 10.1016/j.corsci.2014.04.044
4 Zhu Y K, Free M L, Woollam R, et al. A review of surfactants as corrosion inhibitors and associated modeling [J]. Prog. Mater. Sci., 2017, 90: 159
doi: 10.1016/j.pmatsci.2017.07.006
5 Li X H, Deng S D, Fu H. Adsorption and inhibitive action of hexadecylpyridinium bromide on steel in phosphoric acid produced by dihydrate wet method process [J]. J. Appl. Electrochem., 2011, 41: 507
doi: 10.1007/s10800-011-0265-4
6 Fouda A S, Migahed M A, Atia A A, et al. Corrosion inhibition and adsorption behavior of some cationic surfactants on carbon steel in hydrochloric acid solution [J]. J. Bio. Tribo. Corros., 2016, 2: 22
doi: 10.1007/s40735-016-0052-1
7 Vasudevan T, Muralidharan S, Alwarappan S, et al. The influence of N-hexadecyl benzyl dimethyl ammonium chloride on the corrosion of mild steel in acids [J]. Corros. Sci., 1995, 37: 1235
8 Zhang Q, Chen Z Y, Guo X P. Investigation of the adsorption behavior of dodecylamine on carbon steel [J]. J. Chin. Soc. Corros. Prot., 2007, 27(5): 288
张 茜, 陈振宇, 郭兴蓬. 十二胺在碳钢表面的吸附行为 [J]. 中国腐蚀与防护学报, 2007, 27(5): 288
9 Li X H, Fu H, Dong C Q, et al. Corrosion inhibition of cold rolled steel in hydrochloric acid medium 1227 [A]. Proceedings of the 15th National Symposium on Corrosion Inhibitors [C]. Shenyang, 2008: 78
李向红, 付 惠, 董春琼 等. 盐酸介质中1227对冷轧钢的缓蚀作用 [A]. 第十五届全国缓蚀剂学术讨论会论文集 [C]. 沈阳, 2008: 78
10 Sampat S S, Vora J C. Corrosion inhibition of 3s aluminium in trichloroacetic acid by methyl pyridines [J]. Corros. Sci., 1974, 14: 581
11 Wang L Z, Huang M, Li X H. Corrosion inhibition of anionic surfactant on steel in trichloroacetic acid medium [J]. Mater. Prot., 2021, 54(8): 79
王丽姿, 黄 苗, 李向红. 三氯乙酸介质中阴离子表面活性剂对钢的缓蚀性 [J]. 材料保护, 2021, 54(8): 79
12 Wang L Z, Huang M, Li X H. Inhibition action of calcium lignosulphonate on cold rolled steel in trichloroacetic acid media [J]. Appl. Chem. Ind., 2020, 49(11): 2711
王丽姿, 黄 苗, 李向红. 三氯乙酸介质中木质素磺酸钙对冷轧钢的缓蚀性能 [J]. 应用化工, 2020, 49(11): 2711
13 Masroor S, Mobin M. Application of surfactants as corrosion inhibitor for different metals and alloys: a review [J]. Int. J. Sci. Eng. Res., 20216, 7: 585
14 Olasunkanmi L O, Ebenso E E. Experimental and computational studies on propanone derivatives of quinoxalin-6-yl-4,5-dihydropyrazole as inhibitors of mild steel corrosion in hydrochloric acid [J]. J. Colloid Interface Sci., 2020, 561: 104
15 Fuchs-Godec R, Doleček V. A effect of sodium dodecylsulfate on the corrosion of copper in sulphuric acid media [J]. Colloids Surf., 2004, 244A: 73
16 Hu H H, Chen C F. Mechanism of temperature influence on adsorption of Schiff Base [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 786
胡慧慧, 陈长风. 温度影响席夫碱缓蚀剂吸附的机理研究 [J]. 中国腐蚀与防护学报, 2021, 41: 786
doi: 10.11902/1005.4537.2020.156
17 Singh A, Ansari K R, Chauhan D S, et al. Comprehensive investigation of steel corrosion inhibition at macro/micro level by ecofriendly green corrosion inhibitor in 15% HCl medium [J]. J. Colloid Interface Sci., 2020, 560: 225
doi: 10.1016/j.jcis.2019.10.040
18 Zhao T P, Mu G N. The adsorption and corrosion inhibition of anion surfactants on aluminium surface in hydrochloric acid [J]. Corros. Sci., 1999, 41: 1937
doi: 10.1016/S0010-938X(99)00029-3
19 Pareek S, Jain D, Hussain S, et al. A new insight into corrosion inhibition mechanism of copper in aerated 3.5 wt.% NaCl solution by eco-friendly imidazopyrimidine dye: experimental and theoretical approach [J]. Chem. Eng. J., 2019, 358: 725
20 Saleh M M, Mahmoud M G, Abd El-Lateef H M. Comparative study of synergistic inhibition of mild steel and pure iron by 1-hexadecylpyridinium chloride and bromide ions [J]. Corros. Sci., 2019, 154: 70
doi: 10.1016/j.corsci.2019.03.048
21 Zhang Q H, Hou B S, Li Y Y, et al. Two novel chitosan derivatives as high efficient eco-friendly inhibitors for the corrosion of mild steel in acidic solution [J]. Corros. Sci., 2020, 164: 108346
doi: 10.1016/j.corsci.2019.108346
22 Khaled K F. The inhibition of benzimidazole derivatives on corrosion of iron in 1 M HCl solutions [J]. Electrochim. Acta, 2003, 48: 2493
doi: 10.1016/S0013-4686(03)00291-3
23 Amin M A, Abd El-Rehim S S, El-Sherbini E E F, et al. The inhibition of low carbon steel corrosion in hydrochloric acid solutions by succinic acid: Part I. Weight loss, polarization, EIS, PZC, EDX and SEM studies [J]. Electrochimi. Acta, 2007, 52: 3588
doi: 10.1016/j.electacta.2006.10.019
24 Luo W P, Luo X, Shi Y T, et al. Preparation and corrosion inhibition of super hydrophobic adsorption film of lotus leaf extract on mild steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 903
罗为平, 罗 雪, 石悦婷 等. Q235钢表面的超疏水吸附层形成与缓蚀研究 [J]. 中国腐蚀与防护学报, 2022, 42: 903
doi: 10.11902/1005.4537.2021.296
25 Keleş H, Keleş M, Sayın K. Experimental and theoretical investigation of inhibition behavior of 2-((4-(dimethylamino)benzylidene)amino) benzenethiol for carbon steel in HCl solution [J]. Corros. Sci., 2021, 184: 109376
doi: 10.1016/j.corsci.2021.109376
26 Qu Q, Jiang S, Bai W, et al. Effect of ethylenediamine tetraacetic acid disodium on the corrosion of cold rolled steel in the presence of benzotriazole in hydrochloric acid [J]. Electrochim. Acta, 2007, 52: 6811
27 Gewirth A A, Niece B K. Electrochemical applications of in situ scanning probe microscopy [J]. Chem. Rev., 1997, 97: 1129
pmid: 11851445
28 Yin X B, Li Y Q, Gao R J. Preparation of superhydrophobic surface on copper substrate and its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 93
尹续保, 李育桥, 高荣杰. 铜基超疏水表面的制备及其耐蚀性研究 [J]. 中国腐蚀与防护学报, 2022, 42: 93
doi: 10.11902/1005.4537.2020.256
29 Singh M M, Gupta A. Corrosion behaviour of mild steel in formic acid solutions [J]. Mater. Chem. Phys., 1996, 46: 15
doi: 10.1016/0254-0584(96)80124-6
30 Feng L, Zhang S T, Zheng S Y, et al. Effect of halogen anions on corrosion inhibition of ionic liquids [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 791
冯 丽, 张胜涛, 郑思远 等. 卤素阴离子对离子液体缓蚀性能的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 791
[1] LIU Guoqiang, ZHANG Dongfang, CHEN Haoxiang, FAN Zhihong, XIONG Jianbo, WU Qingfa. Electrochemical Corrosion Behavior of 2304 Duplex Stainless Steel in a Simulated Pore Solution in Reinforced Concrete Serving in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 204-212.
[2] ZHAO Guoxian, LIU Ranran, DING Langyong, ZHANG Siqi, GUO Menglong, WANG Yingchao. Effect of Temperature on CO2-inducedCorrosion Behavior of 5Cr Steel in a Simulated Oilfield Produced High-temperature and High-pressured Water[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[3] WANG Jingyu, ZHOU Xuejie, WANG Honglun, WU Jun, CHEN Hao, ZHENG Penghua. Initial Corrosion Behavior of Carbon Steel and High Strength Steel in South China Sea Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 237-245.
[4] BAI Xuehan, DING Kangkang, ZHANG Penghui, FAN Lin, ZHANG Huixia, LIU Shaotong. Accelerated Corrosion Test of AH36 Ship Hull Steel in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 187-196.
[5] WANG Pengjie, SONG Yuhao, FAN Lin, DENG Kuanhai, LI Zhonghui, MEI Zongbin, GUO Lei, LIN Yuanhua. Inhibition of Q235 Steel in 1 mol/L HCl Solution by a New Efficient Imidazolium Schiff Base Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2024, 44(1): 59-70.
[6] CHANG Xueting, SONG Jiaqi, WANG Bing, WANG Dongsheng, CHEN Wencong, WANG Haifeng. Effect of Micro-alloying with Cr, N and Al on Corrosion Resistance of High Manganese Austenitic Steel in Acidic Salt Spray Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 47-58.
[7] GUO Zhao, LI Han, CUI Zhongyu, WANG Xin, CUI Hongzhi. Comparative Study on Stress Corrosion Behavior of A100 Ultrahigh-strength Steel Beneath Dynamic Thin Electrolyte Layer and in Artificial Seawater Environments[J]. 中国腐蚀与防护学报, 2023, 43(6): 1303-1311.
[8] SHANG Qiang, MAN Cheng, PANG Kun, CUI Zhongyu, DONG Chaofang, CUI Hongzhi. Mechanism of Post-heat Treatment on Intergranular Corrosion Behavior of SLM-316L Stainless Steel with Different Carbon Contents[J]. 中国腐蚀与防护学报, 2023, 43(6): 1273-1283.
[9] LI Min, HU Lingyue, HU Kefeng, SONG Yao, ZHANG Zequn, LI Zongxin, ZHANG Bowei, DONG Chaofang, WU Junsheng. Crevice Corrosion Behavior of 316L Stainless Steel in Deep-sea Environment[J]. 中国腐蚀与防护学报, 2023, 43(6): 1375-1382.
[10] LI Shuang, DONG Lijin, ZHENG Huaibei, WU Chengchuan, WANG Hongli, LING Dong, WANG Qinying. Research Progress of Stress Corrosion Cracking of Ultra-high Strength Steels for Aircraft Landing Gear[J]. 中国腐蚀与防护学报, 2023, 43(6): 1178-1188.
[11] YU Chenjun, ZHANG Tianyi, ZHANG Naiqiang, ZHU Zhongliang. Influence of Thermal Aging on Corrosion Behavior of Ferritic-martensitic Steel P92 in Supercritical Water[J]. 中国腐蚀与防护学报, 2023, 43(6): 1349-1357.
[12] HE Xun, WU Mengxue, YIN Li, ZHU Jin. Damage Evolution and Fatigue Life of Steel Wire with Double Corrosion Pits for Suspension Bridge under Wind- and Traffic-loads[J]. 中国腐蚀与防护学报, 2023, 43(6): 1358-1366.
[13] REN Wankai, LIAN Zhouyang, ZHOU Kang, LUO Zhengwei, WEI Wuji, ZHANG Xueying. Influence of Ammonia Desulfurization Liquid Components on Localized Corrosion Development Stage of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[14] HE Jing, YU Hang, FU Ziying, YUE Penghui. Effect of Water-soluble Corrosion Inhibitor on Corrosion Behavior of Q235 Pipeline Steel for Construction[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[15] SHI Jian, HU Xuewen, HE Bo, PU Hong, GUO Rui, WANG Fei. Effect of Cr-Sb Addition on Atmospheric Corrosion Resistance of Economical High Weathering Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1159-1164.
No Suggested Reading articles found!