Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (1): 237-245    DOI: 10.11902/1005.4537.2023.031
Current Issue | Archive | Adv Search |
Initial Corrosion Behavior of Carbon Steel and High Strength Steel in South China Sea Atmosphere
WANG Jingyu1, ZHOU Xuejie1,2(), WANG Honglun3, WU Jun1,2, CHEN Hao1,2, ZHENG Penghua1,2
1.Wuhan Research Institute of Materials Protection, Wuhan 430030, China
2.Wuhan Materials Corrosion National Obserbation and Research Station, Wuhan 430030, China
3.Key Laboratory of Space Launching Site Reliability Technology, Haikou 571126, China
Cite this article: 

WANG Jingyu, ZHOU Xuejie, WANG Honglun, WU Jun, CHEN Hao, ZHENG Penghua. Initial Corrosion Behavior of Carbon Steel and High Strength Steel in South China Sea Atmosphere. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 237-245.

Download:  HTML  PDF(14267KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion performance of carbon steel and three kinds of high-strength steels is comparatively assessed via outdoor exposure in marine atmosphere of the South China Sea in a test site at Wenchang area of Hainan Province, which provides data support and theoretical basis for the development of steels resistant to atmospheric corrosion in the South China Sea. Four kinds of steel, Q235B, Q350EWR1, Q355 and Q345NQR2, were selected as the testing materials. Outdoor corrosion tests were carried out for half a year and one year respectively, and the tested steels was characterized by means of mass loss measurement, metallographic observation and electrochemical analysis. Serious uniform corrosion occurred on the surface of the four steels. Based on the analysis results, the corrosion resistance of the four kinds of steels in the marine atmosphere of the South China Sea is ranked as the following sequence: Q355 > Q345NQR2 > Q235B > Q350EWR1.

Key words:  South China Sea      marine atmospheric environment      atmospheric corrosion test      high strength steel      electrochemical test     
Received:  13 February 2023      32134.14.1005.4537.2023.031
ZTFLH:  TG174  
Fund: Science & Technology Fundamental Resources Investigation Program(2021FY100600)
Corresponding Authors:  ZHOU Xuejie, E-mail: zhouxj11@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.031     OR     https://www.jcscp.org/EN/Y2024/V44/I1/237

SteelCSiMnPSCuCrNiFe
Q235B0.1640.2040.2670.0200.0280.0100.0140.009Bal.
Q350EWR1≤0.070.27≤0.500.0130.0020.3513.4970.188Bal.
Q3550.0890.3860.8890.0740.0050.2790.4740.147Bal.
Q345NQR20.1730.4001.6030.0150.0080.00480.0140.023Bal.
Table 1  Main components of four kinds of steels
Fig.1  Original macroscopic corrosion morphologies of Q235B (a, e), Q350EWR1 (b, f), Q355 (c, g) and Q345NQR2 (d, h) steels exposed to atmospheric environment of the South China Sea for 0.5 a (a-d) and 1 a (e-h)
Fig.2  Macro corrosion morphologies of Q235B (a, e), Q350EWR1 (b, f), Q355 (c, g) and Q345NQR2 (d, h) steels exposed to atmospheric environment of the South China Sea for 0.5 a (a-d) and 1 a (e-h) after removing rust
Fig.3  Corrosion morphologies of Q235B (a1-a4), Q350EWR1 (b1-b4), Q355 (c1-c4) and Q345NQR2 (d1-d4) steels exposed to atmospheric environment of the South China Sea for 0.5 a (a1-d1, a2-d2) and 1 a (a3-d3, a4-d4) before (a1-d1, a3-d3)and after (a2-d2, a4-d4) removing rust
Fig.4  Comparison of mean corrosion rates of carbon steel and three high-strength steels after 0.5 and 1 a corrosion
Fig.5  XRD pattern of corrosion products of four kinds of steel after corrosion test in marine atmosphere of the South China Sea
Fig.6  Polarization curves of four kinds of steel after 0.5 a (a) and 1 a (b) corrosion in the marine atmosphere of the South China Sea
Fig.7  Nyquist (a1, a2), impedance module (b1, b2) and phase angle (c1, c2) plots of four kinds of steels after 0.5 a (a1-c1) and 1 a (a2-c2) corrosion in the marine atmosphere of the South China Sea
SteelTime / aEcorr / mVIcorr / μA·cm-2Rs / Ω·cm2CPEr / FRt / Ω·cm2CPEdl / FRct / Ω·cm2
Q235B0.5-489.1950.8845.690.0053111.830.04776583.3
Q350EWR10.5-430.5711.1255.980.006048.850.03894445.1
Q3550.5-411.4870.9616.330.0002481.570.002791883.2
Q345NQR20.5-424.1140.0296.060.0008668.370.004661416.4
Q235B1-353.3671.4825.790.0018224.450.02745465.9
Q350EWR11-333.5291.6455.880.0013620.040.03306428.6
Q3551-378.6831.2226.010.0002187.660.001181765.2
Q345NQR21-336.4450.5716.140.0009056.580.00153860.5
Table 2  Electrochemical fitting results of four kinds of steels after 0.5 and 1 a corrosion
Fig.8  Equivalent circuit diagram of EIS of four kinds of steels after corrosion in marine atmosphere of the South China Sea
1 De Meybaum B R, Ayllon E S. Characterization of atmospheric corrosion products on weathering steels [J]. Corrosion, 1980, 36: 345
doi: 10.5006/0010-9312-36.7.345
2 Guerra J C, Castañeda A, Corvo F, et al. Atmospheric corrosion of low carbon steel in a coastal zone of Ecuador: Anomalous behavior of chloride deposition versus distance from the sea [J]. Mater. Corros., 2019, 70: 444
doi: 10.1002/maco.201810442
3 Alcántara J, Chico B, Díaz I, et al. Airborne chloride deposit and its effect on marine atmospheric corrosion of mild steel [J]. Corros. Sci., 2015, 97: 74
doi: 10.1016/j.corsci.2015.04.015
4 Liu L H, Qi H B, Lu Y P, et al. A review on weathering steel research [J]. Corros. Sci. Prot. Technol., 2003, 15: 86
刘丽宏, 齐慧滨, 卢燕平 等. 耐大气腐蚀钢的研究概况 [J]. 腐蚀科学与防护技术, 2003, 15: 86
5 Xiao K, Dong C F, Li X G, et al. Study on accelerated corrosion tests for carbon steels and weathering steels [J]. Equip. Environ. Eng., 2007, 4(3): 5
肖 葵, 董超芳, 李晓刚 等. 碳钢和耐候钢加速腐蚀实验研究 [J]. 装备环境工程, 2007, 4(3): 5
6 Wang J J, Huang F, Zhou X J, et al. Relative function of effects of alloy elements on corrosion resistance of weathering steels in marine atmosphere [J]. Corros. Prot., 2015, 36: 58
王晶晶, 黄 峰, 周学俊 等. 合金元素对耐候钢在海洋大气中耐蚀性影响的交互作用 [J]. 腐蚀与防护, 2015, 36: 58
7 Wang J J, Chen R N, Hu H C, et al. Effect of Al on microstructure and weathering resistance of 4Crl.5Ni weathering steel [J]. Steel, 2023, 58(2): 126
王进建, 陈润农, 胡惠超 等. 铝对4Cr1.5Ni耐候钢组织和耐候性的影响 [J]. 钢铁, 2023, 58(2): 126
8 Zhou L J, Yang S W. Atmospheric corrosion of steels for marine engineering and development of weathering steels [J]. China Metall., 2022, 32(8): 7
周鲁军, 杨善武. 海洋工程用钢的大气腐蚀与耐候钢的发展 [J]. 中国冶金, 2022, 32(8): 7
9 Zhang X, Liu K, Zhu J, et al. Corrosion behaviors of weathering steel and carbon steel in vertical direction [J]. China Metall., 2023, 33(1): 81
张 旭, 刘 锟, 朱嘉 等. 耐候钢和碳钢在竖直方向上的腐蚀行为 [J]. 中国冶金, 2023, 33(1): 81
10 Yang D H, Song Q C. Study on microstructure and mechanical properties of S355J2W weather resistance steel annealing with different processes [J]. Hot Work. Technol., 2013, 42(12): 235
杨德惠, 宋全超. S355J2W耐候钢不同退火工艺下的组织性能研究 [J]. 热加工工艺, 2013, 42(12): 235
11 Zhang Q C, Wang J J, Wu J S, et al. Effect of ion selective property on protective ability of rust layer formed on weathering steel exposed in the marine atmosphere [J]. Acta Metall. Sin., 2001, 37: 193
张全成, 王建军, 吴建生 等. 锈层离子选择性对耐候钢抗海洋性大气腐蚀性能的影响 [J]. 金属学报, 2001, 37: 193
12 Liu R, Chen X P, Wang X D, et al. Effect of alloy elements on corrosion resistance of weathering steels in marine atmosphere environment [J]. Hot Work. Technol., 2014, 43(20): 19
刘 芮, 陈小平, 王向东 等. 合金元素对耐候钢在海洋大气环境下耐蚀性的影响 [J]. 热加工工艺, 2014, 43(20): 19
13 Liu Y W, Zhao H T, Wang Z Y. Initial corrosion behavior of carbon steel and weathering steel in nansha marine atmosphere [J]. Acta Metall. Sin., 2020, 56: 1247
刘雨薇, 赵洪涛, 王振尧. 碳钢和耐候钢在南沙海洋大气环境中的初期腐蚀行为 [J]. 金属学报, 2020, 56: 1247
14 Li H, Liu Y H, Zhao L H, et al. Corrosion behavior of 300M ultra high strength steel in simulated marine environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 87
李 晗, 刘元海, 赵连红 等. 300M超高强度钢在模拟海洋环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 87-94
15 Wei H H, Zheng D D, Chen C, et al. Corrosion resistance of Q690 high strength steel in simulated corrosive environment of ocean splash zone [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 186
魏欢欢, 郑东东, 陈 晨 等. Q690高强钢在模拟海洋浪溅区环境下耐蚀性能研究 [J]. 中国腐蚀与防护学报, 2023, 43: 186
doi: 10.11902/1005.4537.2022.042
16 Liu J Z, Xing S H, Qian Y, Zhang D L, Ma L. Galvanic corrosion behavior of 20# Steel/Tin bronze couple in flowing seawater [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 127
刘近增, 邢少华, 钱 峣 等. 20#钢/锡青铜偶对在流动海水中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 127
doi: 10.11902/1005.4537.2022.001
17 Wang Z G, Hai C, Jiang J, et al. Corrosion Behavior of Q235 steels in atmosphere at Deyang district for one year [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 871
王志高, 海 潮, 姜 杰 等. Q235钢在德阳大气环境中腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 871
doi: 10.11902/1005.4537.2020.180
18 Xu S, Feng B, He T X, et al. Investigation of corrosion behaviors of different alloy coatings in the soil of transformer substation [J]. Equip. Environ. Eng., 2015, 12(4): 54
徐 松, 冯 兵, 何铁祥 等. 几种合金涂层在变电站土壤中的腐蚀行为研究 [J]. 装备环境工程, 2015, 12(4): 54
[1] LI Shuang, DONG Lijin, ZHENG Huaibei, WU Chengchuan, WANG Hongli, LING Dong, WANG Qinying. Research Progress of Stress Corrosion Cracking of Ultra-high Strength Steels for Aircraft Landing Gear[J]. 中国腐蚀与防护学报, 2023, 43(6): 1178-1188.
[2] GUO Zhao, LI Han, CUI Zhongyu, WANG Xin, CUI Hongzhi. Comparative Study on Stress Corrosion Behavior of A100 Ultrahigh-strength Steel Beneath Dynamic Thin Electrolyte Layer and in Artificial Seawater Environments[J]. 中国腐蚀与防护学报, 2023, 43(6): 1303-1311.
[3] WANG Xiao, LI Ming, LIU Feng, WANG Zhongping, LI Xiangbo, LI Ningwang. Effect of Temperature on Erosion-corrosion Behavior of B10 Cu-Ni Alloy Pipe[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[4] YANG Haifeng, YUAN Zhizhong, LI Jian, ZHOU Naipeng, GAO Feng. Effect of Ni Content on Corrosion Behavior of Cu-bearing Aged Weldable Steels in a Simulated Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[5] REN Huangwei, LIAO Bokai, CUI Linjing, XIANG Tengfei. Effect of Liquid Film Thickness on Corrosion Behavior of Solid Slippery Surface under Thin Liquid Film[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[6] CHEN Qingguo, TANG Quanhong, QIN Zhenjie, LI Yifan, LI Lei, LI Xuanpeng, YUAN Juntao, SU Hang, FU Anqing. Corrosion Behavior of Hot-dip Aluminum Coating in “High Temperature-salt Deposited-CO2/O2” Multi-degree Coupling Environment[J]. 中国腐蚀与防护学报, 2023, 43(3): 569-577.
[7] WANG Jin, NING Peidong, LIU Qianqian, CHEN Nana, ZHANG Xin, XIAO Kui. Corrosion Behavior of Galvanized Steel in a Simulated Marine Atmospheric Environment[J]. 中国腐蚀与防护学报, 2023, 43(3): 578-586.
[8] PENG Hao, CHENG Xiaoying, LI Xiaoliang, WANG Zhaofeng, CAI Zhenxiang. Effect of V and Nb on Hydrogen Traps in High Strength Low Alloy Steel[J]. 中国腐蚀与防护学报, 2023, 43(2): 415-420.
[9] WANG Xiao, LIU Feng, LI Yan, ZHANG Wei, LI Xiangbo. Corrosion Behavior of B10 Cu-Ni Alloy Pipe in Static and Dynamic Seawater[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
[10] LI Han, LIU Yuanhai, ZHAO Lianhong, CUI Zhongyu. Corrosion Behavior of 300M Ultra High Strength Steel in Simulated Marine Environment[J]. 中国腐蚀与防护学报, 2023, 43(1): 87-94.
[11] WEI Huanhuan, ZHENG Dongdong, CHEN Chen, ZHANG Dawei, WANG Kaili. Corrosion Resistance of Q690 High Strength Steel in Simulated Corrosive Environment of Ocean Splash Zone[J]. 中国腐蚀与防护学报, 2023, 43(1): 186-190.
[12] MA Cheng, CUI Yanfa, ZHANG Qing, ZHAO Linlin, WANG Lihui, XIONG Ziliu. Review of Hydrogen Embrittlement of Medium Manganese TRIP Steel[J]. 中国腐蚀与防护学报, 2022, 42(6): 885-893.
[13] WANG Yuxin, WU Bo, DAI Leyang, HU Kefeng, WU Jianhua, YANG Yang, YAN Fulei, ZHANG Xianhui. Galvanic Corrosion Behavior for Coupling of Three Low Alloy Steels in Artificial Seawater at Low Temperatures[J]. 中国腐蚀与防护学报, 2022, 42(6): 894-902.
[14] WEI Huanhuan, LEI Tianqi, ZHENG Dongdong, XIN Zhenke. Corrosion Characteristics of Butt Welds of Q690 High Strength Steel in Laboratory Test as an Enviormental Simulation of Ocean Splash Zone[J]. 中国腐蚀与防护学报, 2022, 42(4): 675-680.
[15] CHEN Hao, FAN Zhibin, CHEN Zhijian, ZHOU Xuejie, ZHENG Penghua, WU Jun. Effect of Cl- and HSO3- on Corrosion Behavior of 439 Stainless Steel Used in Construction[J]. 中国腐蚀与防护学报, 2022, 42(3): 493-500.
No Suggested Reading articles found!