Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (6): 1358-1366    DOI: 10.11902/1005.4537.2022.380
Current Issue | Archive | Adv Search |
Damage Evolution and Fatigue Life of Steel Wire with Double Corrosion Pits for Suspension Bridge under Wind- and Traffic-loads
HE Xun1, WU Mengxue1(), YIN Li1, ZHU Jin2
1.School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu 610500, China
2.Department of Bridge Engineering, Southwest Jiaotong University, Chengdu 610031, China
Cite this article: 

HE Xun, WU Mengxue, YIN Li, ZHU Jin. Damage Evolution and Fatigue Life of Steel Wire with Double Corrosion Pits for Suspension Bridge under Wind- and Traffic-loads. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1358-1366.

Download:  HTML  PDF(5058KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To investigate the course of fatigue damage evolution and fatigue life of the corroded steel wire with double corrosion pits for suspension bridges, a model of high-strength steel wire with double corrosion pits was established through finite element software ANSYS. Based on continuum damage mechanics combined with the time-history data of sling stress of suspenders acquired from the wind-traffic-bridge coupling vibration analysis, the course of fatigue damage evolution for the high-strength steel wire with double corrosion pits under different operation conditions was studied. Meanwhile, the influence of wind speed, traffic load, suspender position, shape of corrosion pit and shape of asymmetric double corrosion pits on the course of damage evolution and fatigue life of the high-strength steel wire with double corrosion pits was discussed respectively. The results show that the corrosion fatigue life of the steel wire with double corrosion pits is more sensitive to high wind speed rather than low wind speed. Moreover, the corrosion fatigue life of steel wire decreases with the increase of the traffic flow under the same wind speed. When the wind and traffic flow are coupled, the corrosion fatigue life of high-strength steel wire with double corrosion pits is obviously lower than that without traffic flow. The short suspender at the bridge mid-span has shorter corrosion fatigue life than that of the longest ground suspender and suspender located at 1/4 span. Furthermore, it is found that the greater the depth-width ratio of the corrosion pit, the sharper shape the corrosion pit, thus the shorter the corrosion fatigue life of the steel wire with double corrosion pits. When the shape of double corrosion pits is asymmetric, the corrosion fatigue life of suspender steel wire is mainly determined by the pits with larger depth-width ratio.

Key words:  corrosion fatigue      damage evolution      fatigue life      high-strength steel wire      double corrosion pits     
Received:  05 December 2022      32134.14.1005.4537.2022.380
ZTFLH:  TU313  
Fund: National Natural Science Foundation of China(51708470);Young Scientific and Technological Innovation Team of Bridge Safety Assessment of Southwest Petroleum University(2018CXTD07);Science and Technology Plan Project of Sichuan Provincial Department of Science and Technology(2020YJ0080);Special Support from China Postdoctoral Science Foundation(2019TQ0271)
Corresponding Authors:  WU Mengxue, E-mail: mx_swpu@126.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.380     OR     https://www.jcscp.org/EN/Y2023/V43/I6/1358

Fig.1  Schematic diagram of side elevation of the suspension bridge and suspenders at key positions (Unit: m)
Fig.2  Stress response time histories of three typical suspenders S1 (a), S19 (b) and S36 (c) under combined load of wind and traffic flow
Traffic flowum/sEquivalent stress range values / MPaNumbers of stress cycles
S1S19S36S1S19S36
No flow10.57.714.064.191008033125904
13.510.785.505.5911952806412240
16.515.287.378.67142561036814544
20.015.797.799.461742411728018144
Free flow10.512.2513.6514.918352892810224
13.513.0713.4214.89119521166412528
16.515.8713.6016.25138241353615408
20.017.1913.3714.44169921900818288
Busy flow10.514.9611.8913.0699361440018288
13.515.7611.8513.73119521684819872
16.517.3312.8414.95136801670419728
20.018.3912.8615.68171361944021024
Table 1  Stress data of the suspenders S1, S19 and S36 under different wind speed and traffic flow conditions in one day[19]
Fig.3  Schematic diagram of a steel wire with a single semi-ellipsoidal pit
Fig.4  Sectional view (a) and top view (b) of the steel wire with double semi-ellipsoidal pits
Mesh accuracy mmMaximum nodal stress MPaMaximum element stress MPaSN / SE
0.1808.79812.5299.54%
0.2800.63810.7598.75%
0.3789.99814.4597.00%
0.4764.50841.5090.85%
Table 2  Calculation results of SN and SE under the conditions of four grid sizes
Fig.5  Mesh division of finite element model for the steel wire with double corrosion pits
Fig.6  Relationship between load cycle and block cycle
Fig.7  Von Mises stress contours nearby the double corrosion pits after operation for 17.5 a (a), 25.0 a (b), 30.0 a (c) and 38.5 a (d)
Fig.8  Damage of sling wire at different time points
Fig.9  Von Mises stress distribution nearby the double corrosion pits along z-axis (a) and x-axis (b)
Fig.10  Damage degrees of suspender steel wire at different wind speeds
Fig.11  Damage degrees (a) and corrosion fatigue life (b) of suspender steel wire under different traffic flow conditions
Fig.12  Damage degrees of suspender steel wire at different positions
Fig.13  Damage degrees of suspender steel wire under different shape parameters
Fig.14  Damage degrees of suspender steel wire with asymmetrical pits
1 Wang Y, Zheng Y Q, Zhang W H, et al. Analysis on damage evolution and corrosion fatigue performance of high-strength steel wire for bridge cable: experiments and numerical simulation [J]. Theor. Appl. Fract. Mech., 2020, 107: 102571
doi: 10.1016/j.tafmec.2020.102571
2 Fan Z Y, Ye Q W, Xu X, et al. Fatigue reliability-based replacement strategy for bridge stay cables: a case study in China [J]. Structures, 2022, 39: 1176
doi: 10.1016/j.istruc.2022.03.093
3 Yang S C, Zhang J Q, Yao G W. Analysis on corrosion-fatigue damage and fracture mechanism of cables/hangers in service bridges [J]. J. Highway Trans. Res. Dev., 2019, 36(3): 80
杨世聪, 张劲泉, 姚国文. 在役桥梁拉吊索腐蚀-疲劳损伤与破断机理分析[J]. 公路交通科技, 2019, 36(3): 80
doi: 10.3969/j.issn.1002-0268.2019.03.012
4 Liu D, Liu J, Huang F, et al. Corrosion fatigue crack growth prediction model based on stress ratio and threshold for marine engineering steel DH36Z35 in seawater [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 163
刘 冬, 刘 静, 黄 峰 等. 考虑应力比和门槛值的海水腐蚀疲劳裂纹扩展预测模型 [J]. 中国腐蚀与防护学报, 2022, 42: 163
5 Sun X G, Wang Z H, Xu X X, et al. Effect of industrial atmospheric environment on corrosion fatigue behavior of Al-Mg-Si alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 501
孙晓光, 王子晗, 徐学旭 等. 工业大气环境对Al-Mg-Si合金腐蚀疲劳特性的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 501
doi: 10.11902/1005.4537.2021.043
6 Hoeppner D W. Model for prediction of fatigue lives based upon a pitting corrosion fatigue process [M]//Fong J T. Fatigue mechanisms. Philadelphia: American Society for Testing and Materials, 1979: 841
7 Chen C, Jie Z Y, Wang K N. Fatigue life evaluation of high-strength steel wires with multiple corrosion pits based on the TCD [J]. J. Constr. Steel Res., 2021, 186: 106913
doi: 10.1016/j.jcsr.2021.106913
8 Kondo Y. Prediction of fatigue crack initiation life based on pit growth [J]. Corrosion, 1989, 45: 7
doi: 10.5006/1.3577891
9 Xu H S, Ren K, Yan D H. Study on stress intensity factor of double pits in corroded cable wires [J]. J. China Foreign Highw., 2021, 41(5): 90
许红胜, 任 凯, 颜东煌. 腐蚀拉索钢丝的双蚀坑应力强度因子研究 [J]. 中外公路, 2021, 41(5): 90
10 Fu L. Research of the effect of erosion pits on the stress intensity factor of cable wire [J]. Highw. Eng., 2022, 47(4): 40
傅 励. 斜拉索平行钢丝多蚀坑应力强度因子研究 [J]. 公路工程, 2022, 47(4): 40
11 Wang Z H. The research on stress intensity factor and remaining life of cable wire with multiple corrosion holes [D]. Changsha: Changsha University of Science and Technology, 2021
王智鸿. 拉索钢丝多蚀坑应力强度因子及剩余寿命研究 [D]. 长沙: 长沙理工大学, 2021
12 Ren K. The research on stress intensity factor and extended life for double pits of cable wire [D]. Changsha: Changsha University of Science and Technology, 2019
任 凯. 拉索钢丝双蚀坑应力强度因子及其扩展寿命研究 [D]. 长沙: 长沙理工大学, 2019
13 Xiao Y C, Li S, Gao Z. A continuum damage mechanics model for high cycle fatigue [J]. Int. J. Fatigue, 1998, 20: 503
doi: 10.1016/S0142-1123(98)00005-X
14 Amiri M, Arcari A, Airoldi L, et al. A continuum damage mechanics model for pit-to-crack transition in AA2024-T3 [J]. Corros. Sci., 2015, 98: 678
doi: 10.1016/j.corsci.2015.06.009
15 Hu W P, Shen Q A, Zhang M, et al. Corrosion-fatigue life prediction for 2024-T62 aluminum alloy using damage mechanics-based approach [J]. Int. J. Damage Mech., 2012, 21: 1245
doi: 10.1177/1056789511432791
16 Cui C J, Chen A R, Ma R J. An improved continuum damage mechanics model for evaluating corrosion-fatigue life of high-strength steel wires in the real service environment [J]. Int. J. Fatigue, 2020, 135: 105540
doi: 10.1016/j.ijfatigue.2020.105540
17 Lemaitre J, Chaboche J L, translated by Shrivastava B. Mechanics of Solid Materials [M]. Cambridge: Cambridge University, 1990
18 Sun B. A continuum model for damage evolution simulation of the high strength bridge wires due to corrosion fatigue [J]. J. Constr. Steel Res., 2018, 146: 76
doi: 10.1016/j.jcsr.2018.03.031
19 Wu M X, Zhu J, Heng J L, et al. Fatigue assessment on suspenders under stochastic wind and traffic loads based on in-situ monitoring data [J]. Appl. Sci., 2019, 9: 3405
doi: 10.3390/app9163405
20 Hu P, Meng Q C, Hu W P, et al. A continuum damage mechanics approach coupled with an improved pit evolution model for the corrosion fatigue of aluminum alloy [J]. Corros. sci., 2016, 113: 78
doi: 10.1016/j.corsci.2016.10.006
21 Shen F, Hu W P, Meng Q C. A damage mechanics approach to fretting fatigue life prediction with consideration of elastic-plastic damage model and wear [J]. Tribol. Int., 2015, 82: 176
doi: 10.1016/j.triboint.2014.10.017
22 Cerit M, Genel K, Eksi S. Numerical investigation on stress concentration of corrosion pit [J]. Eng. Fail. Anal., 2009, 16: 2467
doi: 10.1016/j.engfailanal.2009.04.004
23 Zheng Y Q, Wang Y. Damage evolution simulation and life prediction of high-strength steel wire under the coupling of corrosion and fatigue [J]. Corros. Sci., 2020, 164: 108368
doi: 10.1016/j.corsci.2019.108368
[1] CHEN Zhenyu, ZHU Zhongliang, MA Chenhao, ZHANG Naiqiang, LIU Yutong. Effect of Different Loading Conditions on Corrosion Fatigue Crack Growth Rate of Nickel Base Alloy 617 in Supercritical Water[J]. 中国腐蚀与防护学报, 2023, 43(5): 1057-1063.
[2] LIU Dong, LIU Jing, HUANG Feng, DU Liying. Corrosion Fatigue Crack Propagation Performance of DH36 Steel in Simulated Service Conditions for Offshore Engineering Structures[J]. 中国腐蚀与防护学报, 2022, 42(6): 959-965.
[3] WENG Shuo, YU Jun, ZHAO Lihui, FENG Jinzhi, ZHENG Songlin. Effect of Corrosion Damage on Fatigue Behavior of AA7075-T651 Al-alloy[J]. 中国腐蚀与防护学报, 2022, 42(3): 486-492.
[4] WANG Qishan, LI Hongjin, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Loading Modes on Initiation and Propagation of Corrosion Fatigue Cracks of X65 Steel[J]. 中国腐蚀与防护学报, 2022, 42(2): 227-234.
[5] ZHANG Ziyu, WU Xinqiang, HAN En-Hou, KE Wei. A Review on Corrosion Fatigue Crack Growth Behavior of Structural Materials in Nuclear Power Plants[J]. 中国腐蚀与防护学报, 2022, 42(1): 9-15.
[6] SUN Xiaoguang, WANG Zihan, XU Xuexu, HAN Xiaohui, LI Gangqing, LIU Zhiyong. Effect of Industrial Atmospheric Environment on Corrosion Fatigue Behavior of Al-Mg-Si Alloy[J]. 中国腐蚀与防护学报, 2021, 41(4): 501-507.
[7] ZHAN Yuting, WANG Jianhua, JIN Kai, CHEN Jianbin, WANG Hujun, FANG Jun, CHEN Weilin, SUI Lei. Effect of Shot Peening on Fatigue Life Performance of a Home-made Nut[J]. 中国腐蚀与防护学报, 2021, 41(3): 395-399.
[8] Jiapeng LIAO,Xinqiang WU. Review of Notch Effect on Fatigue Behavior of Materials for LWR Plants in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 511-516.
[9] Gaohong CHEN,Yuansen HU,Mei YU,Jianhua LIU,Guoai LI. Effect of Sulfuric Acid Anodizing on Mechanical Properties of 2E12 Al-alloy[J]. 中国腐蚀与防护学报, 2018, 38(6): 579-586.
[10] Xiaoqiang LIU,Xuelian XU,Jibo TAN,Yuan WANG,Xinqiang WU,Yuli ZHENG,Fanjiang MENG,En-Hou HAN. Effect of Reactor Coolant Environment on Fatigue Performance of Alloy 690 Steam Generator Tubes[J]. 中国腐蚀与防护学报, 2015, 35(3): 213-219.
[11] LIANG Rui,ZHANG Xinyan,LI Shuxin,JIANG Feng,CHEN Shuaifu. Effect of Semi-elliptical Pit on Stress Concentration of Round Bar[J]. 中国腐蚀与防护学报, 2013, 33(6): 532-536.
[12] TAN Jibo, WU Xinqiang, HAN En-Hou. REVIEW ON RELATIONSHIP BETWEEN DYNAMIC STRAIN AGING AND ENVIRONMENTALLY ASSISTED CRACKING OF STRUCTURAL MATERIALS USED IN NUCLEAR POWER PLANTS[J]. 中国腐蚀与防护学报, 2012, 32(6): 437-442.
[13] BAO Juncheng, ZHAO Jie, WANG Zhiqi, MA Xu.
EXPERIMENTAL RESEARCH ON FATIGUE PROPERTY OF WELDED JOINTS OF BT20 TITANIUM ALLOY IN CORROSION ENVIRONMENT
[J]. 中国腐蚀与防护学报, 2010, 30(4): 313-316.
[14] ZHOU Huamao WANG Jianqiu ZHANG Bo HAN Enhou ZANG Qishan. ACOUSTIC EMISSION SIGNAL ANALYSIS FOR ROLLED AZ31B MAGNESIUM ALLOY DURING CORROSION FATIGUE PROCESS[J]. 中国腐蚀与防护学报, 2009, 29(2): 81-87.
[15] . CORROSION FATIGUE BEHAVIOR OF 304 STAINLESS STEEL MICRO-SIZED SPECIMENS[J]. 中国腐蚀与防护学报, 2008, 28(2): 99-103 .
No Suggested Reading articles found!