|
|
Crevice Corrosion Behavior of 316L Stainless Steel in Deep-sea Environment |
LI Min1, HU Lingyue2, HU Kefeng2, SONG Yao1, ZHANG Zequn3, LI Zongxin3, ZHANG Bowei3( ), DONG Chaofang3, WU Junsheng3( ) |
1.China Huanqiu Contracting & Engineering Co., Ltd., Beijing Huanqiu Corporation, Beijing 100012, China 2.Wuhan Second Ship Design Institute, Wuhan 430064, China 3.Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China |
|
Cite this article:
LI Min, HU Lingyue, HU Kefeng, SONG Yao, ZHANG Zequn, LI Zongxin, ZHANG Bowei, DONG Chaofang, WU Junsheng. Crevice Corrosion Behavior of 316L Stainless Steel in Deep-sea Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1375-1382.
|
Abstract The corrosion behavior of crevice configurations composed of 316L stainless steel combined with the same steel, poly tetra fluoroethylene (PTFE) and nitrile butadiene rubber (NBR) respectively in seawater environment was investigated comprehensively by deep-sea exposure, simulation deep-sea testing and electrochemical technique. The results show that after 30 d of exposure in the deep-sea environment, in the crevice area of the couple of 316 stainless steels shows uniform corrosion thinning, but the depth of the corrosion pit is relatively shallow. However, the crevices composed of 316L stainless steel contacting with inert materials such as PTFE and NBR exhibit local corrosion mainly at the boundary of the crevice, showing a preferential trend of corrosion extending to the depth. The results of electrochemical tests show that the crevice corrosion sensitivity of different configurations is 316L-316L>316L-PTFE>316L-NBR. The deep-sea simulation test can reproduce the same corrosion phenomena as the deep-sea exposure test, but for the same test period, the crevice corrosion of samples in the real-sea environment is much more serious than that in the indoor simulation environment.
|
Received: 30 November 2022
32134.14.1005.4537.2022.376
|
|
Fund: National Natural Science Foundation of China(51771027) |
Corresponding Authors:
ZHANG Bowei, E-mail: bwzhang@ustb.edu.cn; WU Junsheng, E-mail: wujs@ustb.edu.cn
|
1 |
Wang X L, Yu Q, Wang Y. Research status of deep-sea materials and corrosion protection technology [J]. Total Corros. Control, 2018, 32(10): 80
|
|
王勋龙, 于 青, 王 燕. 深海材料及腐蚀防护技术研究现状 [J]. 全面腐蚀控制, 2018, 32(10): 80
|
2 |
Cao P, Zhou T T, Bai X Q, et al. Research progress on corrosion and protection in deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 12
|
|
曹 攀, 周婷婷, 白秀琴 等. 深海环境中的材料腐蚀与防护研究进展 [J]. 中国腐蚀与防护学报, 2015, 35: 12
|
3 |
Zhou J L, Li X G, Cheng X Q, et al. Research progress on corrosion of metallic materials in deep-sea environment [J]. Corros. Sci. Prot. Technol., 2010, 22: 47
|
|
周建龙, 李晓刚, 程学群 等. 深海环境下金属及合金材料腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2010, 22: 47
|
4 |
He X S, Lü P, He X, et al. New development of the research on corrosion of meatal structrues in deep-sea environment [J]. Environ. Eng., 2014, 32(S1): 1020
|
|
何筱姗, 吕 平, 何 鑫 等. 关于深海环境下金属结构腐蚀的研究新进展 [J]. 环境工程, 2014, 32(S1): 1020
|
5 |
Zhang P H, Li X C, Tong H T, et al. Corrosion behavior of 10CrNi3MoV steel in deep-sea environment of western pacific [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1075
|
|
张彭辉, 李显超, 仝宏涛 等. 10CrNi3MoV钢在西太平洋深海环境下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1075
doi: 10.11902/1005.4537.2021.328
|
6 |
Zhang Z Q, Chen Z B, Dong Q J, et al. Galvanic corrosion behavior of low alloy steel, stainless steel and Al-Mg alloy in simulated deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 417
|
|
张泽群, 陈质彬, 董其娟 等. 低合金钢、不锈钢和铝镁合金在模拟深海环境中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 417
doi: 10.11902/1005.4537.2021.166
|
7 |
Wang W W, Guo W M, Zhang H X. Research on the corrosion of stainless steel in deep ocean [J]. Equip. Environ. Eng., 2010, 7(5): 79
|
|
王伟伟, 郭为民, 张慧霞. 不锈钢深海腐蚀研究 [J]. 装备环境工程, 2010, 7(5): 79
|
8 |
Liu D Y, Wang M M, Zhang L, et al. Localized corrosion law of 316L stainless steel in deep seawater [J]. Equip. Environ. Eng., 2019, 16(1): 102
|
|
刘殿宇, 王毛毛, 张 亮 等. 316L不锈钢在海洋深水环境中的局部腐蚀规律 [J]. 装备环境工程, 2019, 16(1): 102
|
9 |
Zhao B J, Fan Y, Li Z Z, et al. Crevice corrosion behavior of 316L stainless steel paired with four different materials [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 332
|
|
赵柏杰, 范 益, 李镇镇 等. 不同类型接触面对316L不锈钢缝隙腐蚀的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 332
doi: 10.11902/1005.4537.2019.198
|
10 |
Larché N, Thierry D, Debout V, et al. Crevice corrosion of duplex stainless steels in natural and chlorinated seawater [J]. Rev. Metall., 2011, 108: 451
doi: 10.1051/metal/2011080
|
11 |
Li H X, Li D P, Wang M M, et al. Crevice corrosion of 316L stainless steel in coastal waters of South China Sea [J]. Equip. Environ. Eng., 2021, 18(1): 98
|
|
李慧心, 李大朋, 王毛毛 等. 316L不锈钢在南海环境中的缝隙腐蚀行为研究 [J]. 装备环境工程, 2021, 18(1): 98
|
12 |
Hu L H, Zhang Y N, Chang W, et al. Pitting and crevice corrosion behaviors of 2507 duplex stainless steel in deep water environment of the South China Sea [J]. Corros. Prot., 2022, 43(6): 33
|
|
胡丽华, 张玉楠, 常 炜 等. 2507双相不锈钢在南海深水环境中的点蚀和缝隙腐蚀行为 [J]. 腐蚀与防护, 2022, 43(6): 33
|
13 |
Song J W, Wang M M, Zhang L, et al. Corrosion behavior of 2205 duplex stainless steel in deep seawater of South China Sea [J]. Corros. Prot., 2019, 40(12): 898
|
|
宋积文, 王毛毛, 张 亮 等. 2205双相不锈钢在南海深水环境中的腐蚀行为 [J]. 腐蚀与防护, 2019, 40(12): 898
|
14 |
Peng W S, Hou J, Ding K K, et al. Corrosion behavior of 304 stainless steel in deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 145
|
|
彭文山, 侯 健, 丁康康 等. 深海环境中304不锈钢腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 145
doi: 10.11902/1005.4537.2018.103
|
15 |
Duan T G, Peng W S, Ding K K, et al. Long-term field exposure corrosion behavior investigation of 316L stainless steel in the deep-sea environment [J]. Ocean Eng., 2019, 189: 106405
doi: 10.1016/j.oceaneng.2019.106405
|
16 |
National Environmental Protection Agency. Sea water quality standard [S]. Beijing: China Environmental Science Press, 2004
|
|
国家环境保护局. 海水水质标准 [S]. 北京: 中国环境科学出版社, 2004
|
17 |
ASTM. Standard guide for crevice corrosion testing of iron-base and nickel-base stainless alloys in seawater and other chloride-containing aqueous environments [S]. West Conshohocken: ASTM International, 2015
|
18 |
Cai B P, Liu Y H, Tian X J, et al. An experimental study of crevice corrosion behaviour of 316L stainless steel in artificial seawater [J]. Corros. Sci., 2010, 52: 3235
doi: 10.1016/j.corsci.2010.05.040
|
19 |
Li X G, Cheng X Q, Dang J J. An experimental device for corrosion performance of testing materials in simulated deep-sea environment [P]. Chin Pat, 101769853A, 2010
|
|
李晓刚, 程学群, 党建军. 一种用于测试材料在模拟深海环境腐蚀性能的实验装置 [P]. 中国专利, 101769853A, 2010)
|
20 |
ASTM. Standard test method for conducting cyclic potentiodynamic polarization measurements for localized corrosion susceptibility of iron-, nickel-, or cobalt-based alloys [S]. West Conshohocken: ASTM International, 2014
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|