Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (6): 1375-1382    DOI: 10.11902/1005.4537.2022.376
Current Issue | Archive | Adv Search |
Crevice Corrosion Behavior of 316L Stainless Steel in Deep-sea Environment
LI Min1, HU Lingyue2, HU Kefeng2, SONG Yao1, ZHANG Zequn3, LI Zongxin3, ZHANG Bowei3(), DONG Chaofang3, WU Junsheng3()
1.China Huanqiu Contracting & Engineering Co., Ltd., Beijing Huanqiu Corporation, Beijing 100012, China
2.Wuhan Second Ship Design Institute, Wuhan 430064, China
3.Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

LI Min, HU Lingyue, HU Kefeng, SONG Yao, ZHANG Zequn, LI Zongxin, ZHANG Bowei, DONG Chaofang, WU Junsheng. Crevice Corrosion Behavior of 316L Stainless Steel in Deep-sea Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1375-1382.

Download:  HTML  PDF(17294KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of crevice configurations composed of 316L stainless steel combined with the same steel, poly tetra fluoroethylene (PTFE) and nitrile butadiene rubber (NBR) respectively in seawater environment was investigated comprehensively by deep-sea exposure, simulation deep-sea testing and electrochemical technique. The results show that after 30 d of exposure in the deep-sea environment, in the crevice area of the couple of 316 stainless steels shows uniform corrosion thinning, but the depth of the corrosion pit is relatively shallow. However, the crevices composed of 316L stainless steel contacting with inert materials such as PTFE and NBR exhibit local corrosion mainly at the boundary of the crevice, showing a preferential trend of corrosion extending to the depth. The results of electrochemical tests show that the crevice corrosion sensitivity of different configurations is 316L-316L>316L-PTFE>316L-NBR. The deep-sea simulation test can reproduce the same corrosion phenomena as the deep-sea exposure test, but for the same test period, the crevice corrosion of samples in the real-sea environment is much more serious than that in the indoor simulation environment.

Key words:  316L stainless steel      deep-sea environment      simulation experiment      real-sea exposure      crevice corrosion     
Received:  30 November 2022      32134.14.1005.4537.2022.376
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(51771027)
Corresponding Authors:  ZHANG Bowei, E-mail: bwzhang@ustb.edu.cn;
WU Junsheng, E-mail: wujs@ustb.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.376     OR     https://www.jcscp.org/EN/Y2023/V43/I6/1375

Fig.1  Schematic diagram of crevice configuration
Fig.2  Macromorphologies of 316L-316L (a, d), 316L-PTFE (b, e), and 316L-NBR (c, f) crevice samples exposed in simulated seawater (a-c) and deep-sea (d-f) environments for 30 d
Fig.3  Microscopic corrosion morphologies of 316L-316L (a-c), 316L-PTFE (d-f), and 316L-NBR (g-i) crevice samples exposed in simulated seawater environment for 30 d
Fig.4  Microscopic corrosion morphologies of 316L-316L (a-c), 316L-PTFE (d-f), and 316L-NBR (g-i) crevice samples exposed in deep-sea environment for 30 d
Fig.5  3D surface morphologies of 316L-316L (a), 316L-PTFE (b), and 316L-NBR (c) crevice samples exposed in deep-sea environment for 30 d
Fig.6  Cyclic potentiodynamic polarization curves of different crevice samples in simulated seawater: (a) 316L-316L, (b) 316L-PTFE, (c) 316L-NBR, (d) comparison of Eb, Erp and ∆E values
Fig.7  Microscopic corrosion morphologies of 316L-316L (a-c), 316L-PTFE (d-f), and 316L-NBR (g-i) crevice samples after electrochemical tests
1 Wang X L, Yu Q, Wang Y. Research status of deep-sea materials and corrosion protection technology [J]. Total Corros. Control, 2018, 32(10): 80
王勋龙, 于 青, 王 燕. 深海材料及腐蚀防护技术研究现状 [J]. 全面腐蚀控制, 2018, 32(10): 80
2 Cao P, Zhou T T, Bai X Q, et al. Research progress on corrosion and protection in deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 12
曹 攀, 周婷婷, 白秀琴 等. 深海环境中的材料腐蚀与防护研究进展 [J]. 中国腐蚀与防护学报, 2015, 35: 12
3 Zhou J L, Li X G, Cheng X Q, et al. Research progress on corrosion of metallic materials in deep-sea environment [J]. Corros. Sci. Prot. Technol., 2010, 22: 47
周建龙, 李晓刚, 程学群 等. 深海环境下金属及合金材料腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2010, 22: 47
4 He X S, Lü P, He X, et al. New development of the research on corrosion of meatal structrues in deep-sea environment [J]. Environ. Eng., 2014, 32(S1): 1020
何筱姗, 吕 平, 何 鑫 等. 关于深海环境下金属结构腐蚀的研究新进展 [J]. 环境工程, 2014, 32(S1): 1020
5 Zhang P H, Li X C, Tong H T, et al. Corrosion behavior of 10CrNi3MoV steel in deep-sea environment of western pacific [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1075
张彭辉, 李显超, 仝宏涛 等. 10CrNi3MoV钢在西太平洋深海环境下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1075
doi: 10.11902/1005.4537.2021.328
6 Zhang Z Q, Chen Z B, Dong Q J, et al. Galvanic corrosion behavior of low alloy steel, stainless steel and Al-Mg alloy in simulated deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 417
张泽群, 陈质彬, 董其娟 等. 低合金钢、不锈钢和铝镁合金在模拟深海环境中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 417
doi: 10.11902/1005.4537.2021.166
7 Wang W W, Guo W M, Zhang H X. Research on the corrosion of stainless steel in deep ocean [J]. Equip. Environ. Eng., 2010, 7(5): 79
王伟伟, 郭为民, 张慧霞. 不锈钢深海腐蚀研究 [J]. 装备环境工程, 2010, 7(5): 79
8 Liu D Y, Wang M M, Zhang L, et al. Localized corrosion law of 316L stainless steel in deep seawater [J]. Equip. Environ. Eng., 2019, 16(1): 102
刘殿宇, 王毛毛, 张 亮 等. 316L不锈钢在海洋深水环境中的局部腐蚀规律 [J]. 装备环境工程, 2019, 16(1): 102
9 Zhao B J, Fan Y, Li Z Z, et al. Crevice corrosion behavior of 316L stainless steel paired with four different materials [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 332
赵柏杰, 范 益, 李镇镇 等. 不同类型接触面对316L不锈钢缝隙腐蚀的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 332
doi: 10.11902/1005.4537.2019.198
10 Larché N, Thierry D, Debout V, et al. Crevice corrosion of duplex stainless steels in natural and chlorinated seawater [J]. Rev. Metall., 2011, 108: 451
doi: 10.1051/metal/2011080
11 Li H X, Li D P, Wang M M, et al. Crevice corrosion of 316L stainless steel in coastal waters of South China Sea [J]. Equip. Environ. Eng., 2021, 18(1): 98
李慧心, 李大朋, 王毛毛 等. 316L不锈钢在南海环境中的缝隙腐蚀行为研究 [J]. 装备环境工程, 2021, 18(1): 98
12 Hu L H, Zhang Y N, Chang W, et al. Pitting and crevice corrosion behaviors of 2507 duplex stainless steel in deep water environment of the South China Sea [J]. Corros. Prot., 2022, 43(6): 33
胡丽华, 张玉楠, 常 炜 等. 2507双相不锈钢在南海深水环境中的点蚀和缝隙腐蚀行为 [J]. 腐蚀与防护, 2022, 43(6): 33
13 Song J W, Wang M M, Zhang L, et al. Corrosion behavior of 2205 duplex stainless steel in deep seawater of South China Sea [J]. Corros. Prot., 2019, 40(12): 898
宋积文, 王毛毛, 张 亮 等. 2205双相不锈钢在南海深水环境中的腐蚀行为 [J]. 腐蚀与防护, 2019, 40(12): 898
14 Peng W S, Hou J, Ding K K, et al. Corrosion behavior of 304 stainless steel in deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 145
彭文山, 侯 健, 丁康康 等. 深海环境中304不锈钢腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 145
doi: 10.11902/1005.4537.2018.103
15 Duan T G, Peng W S, Ding K K, et al. Long-term field exposure corrosion behavior investigation of 316L stainless steel in the deep-sea environment [J]. Ocean Eng., 2019, 189: 106405
doi: 10.1016/j.oceaneng.2019.106405
16 National Environmental Protection Agency. Sea water quality standard [S]. Beijing: China Environmental Science Press, 2004
国家环境保护局. 海水水质标准 [S]. 北京: 中国环境科学出版社, 2004
17 ASTM. Standard guide for crevice corrosion testing of iron-base and nickel-base stainless alloys in seawater and other chloride-containing aqueous environments [S]. West Conshohocken: ASTM International, 2015
18 Cai B P, Liu Y H, Tian X J, et al. An experimental study of crevice corrosion behaviour of 316L stainless steel in artificial seawater [J]. Corros. Sci., 2010, 52: 3235
doi: 10.1016/j.corsci.2010.05.040
19 Li X G, Cheng X Q, Dang J J. An experimental device for corrosion performance of testing materials in simulated deep-sea environment [P]. Chin Pat, 101769853A, 2010
李晓刚, 程学群, 党建军. 一种用于测试材料在模拟深海环境腐蚀性能的实验装置 [P]. 中国专利, 101769853A, 2010)
20 ASTM. Standard test method for conducting cyclic potentiodynamic polarization measurements for localized corrosion susceptibility of iron-, nickel-, or cobalt-based alloys [S]. West Conshohocken: ASTM International, 2014
[1] SHANG Qiang, MAN Cheng, PANG Kun, CUI Zhongyu, DONG Chaofang, CUI Hongzhi. Mechanism of Post-heat Treatment on Intergranular Corrosion Behavior of SLM-316L Stainless Steel with Different Carbon Contents[J]. 中国腐蚀与防护学报, 2023, 43(6): 1273-1283.
[2] LYU Zhengping, LI Yuan, LIU Xiaohang, CUI Zhongyu, CUI Hongzhi, WANG Xin, PANG Kun, LI Yizhou. Synergistic Inhibition Effect of Thiourea and Sodium Nitrate on Crevice Corrosion of 7075 Al-alloy in Acidic Sodium Chloride Solution[J]. 中国腐蚀与防护学报, 2023, 43(6): 1367-1374.
[3] BAI Yihan, ZHANG Hang, ZHU Zejie, WANG Jiangying, CAO Fahe. Research Progress of Monitoring Ion Concentration Variation of Micro-areas in Corrosion Crevice Interior[J]. 中国腐蚀与防护学报, 2023, 43(4): 828-836.
[4] WANG Changgang, DANIEL Enobong Felix, LI Chao, DONG Junhua, YANG Hua, ZHANG Dongjiu. Corrosion Mechanisms of Carbon Steel- and Stainless Steel-bolt Fasteners in Marine Environments[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[5] ZHANG Yuan, ZHANG Xian, CHEN Siyu, LI Teng, LIU Jing, WU Kaiming. Effect of Phosphoric Acid Concentration on Corrosion Resistance and Passivation Film Properties of 316L Stainless Steel[J]. 中国腐蚀与防护学报, 2022, 42(5): 819-825.
[6] ZHANG Zequn, CHEN Zhibin, DONG Qijuan, WU Cong, LI Zongxin, WANG Hezu, WU Fei, ZHANG Bowei, WU Junsheng. Galvanic Corrosion Behavior of Low Alloy Steel, Stainless Steel and Al-Mg Alloy in Simulated Deep Sea Environment[J]. 中国腐蚀与防护学报, 2022, 42(3): 417-424.
[7] WANG Qixuan, LYU Wensheng, YANG Peng, ZHU Liyi, LIAO Wenjing, ZHU Yuanle. Corrosion of Stainless Steel Shell of Embedded Sensor in Tailings Pond[J]. 中国腐蚀与防护学报, 2022, 42(2): 331-337.
[8] ZHANG Wenli, ZHANG Zhenlong, WU Zhaoliang, HAN Sike, CUI Zhongyu. Effect of Temperature on Pitting Corrosion Behavior of 316L Stainless Steel in Oilfield Wastewater[J]. 中国腐蚀与防护学报, 2022, 42(1): 143-148.
[9] SUN Baozhuang, ZHOU Xiaocheng, LI Xiaorong, SUN Weilu, LIU Zirui, WANG Yuhua, HU Yang, LIU Zhiyong. Stress Corrosion Cracking Behavior of 316L Stainless Steel with Varying Microstructure in Ammonium Chloride Environment[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818.
[10] ZHANG Longhua, LI Changjun, PAN Lei, HAN Sike, WANG Xin, CUI Zhongyu. Corrosion Behavior of 316L Stainless Steel in Simulated Oilfield Wastewater[J]. 中国腐蚀与防护学报, 2021, 41(5): 625-632.
[11] YI Guanghui, ZHENG Dajiang, SONG Guangling. Influence of Acid Pickling on Morphology, Optical Parameters and Corrosion Resistance of 316L Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(4): 461-468.
[12] ZHAO Baijie, FAN Yi, LI Zhenzhen, ZHANG Bowei, CHENG Xuequn. Crevice Corrosion Behavior of 316L Stainless Steel Paired with Four Different Materials[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[13] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[14] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[15] Changgang WANG,Jie WEI,Xin WEI,Xin MU,Fang XUE,Junhua DONG,Wei KE,Guoping LI. Crevice Corrosion Behavior of Several Super Stainless Steels in a Simulated Corrosive Environment of Flue Gas Desulfurization Process[J]. 中国腐蚀与防护学报, 2019, 39(1): 43-50.
No Suggested Reading articles found!