Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (1): 175-186    DOI: 10.11902/1005.4537.2023.036
Current Issue | Archive | Adv Search |
Effect of Temperature on CO2-inducedCorrosion Behavior of 5Cr Steel in a Simulated Oilfield Produced High-temperature and High-pressured Water
ZHAO Guoxian1, LIU Ranran1(), DING Langyong1, ZHANG Siqi2, GUO Menglong2, WANG Yingchao1
1.School of Material Science and Technology, Xi'an Shiyou University, Xi'an 710065, China
2.Xi'an Maurer Petroleum Engineering Laboratory, Co. Ltd., Xi'an 710065, China
Cite this article: 

ZHAO Guoxian, LIU Ranran, DING Langyong, ZHANG Siqi, GUO Menglong, WANG Yingchao. Effect of Temperature on CO2-inducedCorrosion Behavior of 5Cr Steel in a Simulated Oilfield Produced High-temperature and High-pressured Water. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 175-186.

Download:  HTML  PDF(14214KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The CO2-induced corrosion of 5Cr steel in a magnetically driven autoclave with a simulated oilfield produced water at different temperatures and pressures was assessed by means of XRD, SEM and EDS as well as electrochemical measurement and wire beam electrode (WBE) technique. The results show that with the increasing temperature, the corrosion potential of the electrode as a whole has different degrees of negative shift, the corrosion tendency and the corrosion rate of 5Cr steel all increase; meanwhile, the capacitive impedance arc with a large radius emerged in the electrochemical impedance spectrum of 5Cr steel, the film coverage degree and compactness of the corrosion product increase, the charge transfer resistance tends to increase, and the resistance of the electrochemical reaction increases significantly. The formation and expansion of the local anode area on the surface of 5Cr steel has the tendency to cause pitting corrosion, which may be preferred to form at defects on the film formed in the early stage of corrosion. The corrosion products are gradually deposited on the inner wall of the pit, then a protective surface layer with obvious Cr enrichment is formed on the inner wall of the pit, thereby, the original pitting corrosion area is transformed from the active sites on the original anode to the cathode area, therefore, the pitting expansion is inhibited. The polar transformation phenomenon of the corrosion current of the local sites of the 5Cr steel beneath the corrosion product film occurs, namely, from cathodic ones turn to anodic ones, and the defects in the corrosion product film make the 5Cr steel substrate corroded, resulting in the appearance of anodic current.

Key words:  5Cr Steel      CO2 corrosion      high temperature and high pressure electrochemistry      electrochemical impedance spectroscopy      wire beam electrode     
Received:  18 February 2023      32134.14.1005.4537.2023.036
ZTFLH:  TG174  
Corresponding Authors:  LIU Ranran, E-mail: 1970242833@qq.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.036     OR     https://www.jcscp.org/EN/Y2024/V44/I1/175

Fig.1  Schematic diagram of electrochemical testing apparatus and wire beam electrode structure
Fig.2  General and maximum pitting corrosion rates (a) and pit micro-appearances (b-d) of 5Cr steel at 50oC (b), 70oC (c) and 90oC (d)
Fig.3  Surface morphologies of 5Cr steel after immersion in simulated solution for 14 d at 50oC (a), 70oC (b) and 90oC (c)
Fig.4  EDS analysis areas of 5Cr steel after immersion in simulated solution for 14 d at 50oC (a), 70oC (b) and 90oC (c)
Temperature / oCScan areaCOSClCaCrFe
5015.4645.071.683.046.5029.085.23
27.6642.101.982.686.7127.407.63
7017.9037.264.151.2614.2720.6712.16
22.183.660.240.040.245.9786.79
9017.2241.022.172.4511.0420.1112.65
211.1854.090.900.5727.622.392.13
Table 1  EDS analysis results of the marked zones on the surfaces of 5Cr steel samples in Fig. 4
Fig.5  Cross-sectional morphologies of corrosion pits formed on 5Cr steel after immersion for 14 d at 50oC (a), 70oC (b) and 90oC (c)
Temperature / oCScan areaCOSClCaCrFe
50145.8338.85//0.260.732.40
218.6312.140.430.220.916.2660.52

70

114.4537.310.460.667.1130.547.48
220.2446.180.181.205.2421.325.15
326.1339.710.221.083.9515.5213.19
90111.2237.641.746.431.3014.3726.82
25.5934.781.566.601.6019.0130.53
Table 2  EDS analysis results of the marked areas in Fig.5
Fig.6  EDS mappings of Cr and Fe on the cross section of 5Cr steel after immersion in simulated solution for 14 d at 50oC (a), 70oC (b) and 90oC (c)
Fig.7  XRD patterns of 5Cr steel after immersion in simulated solution for 14 d at 50oC (a), 70oC (b) and 90oC (c)
Fig.8  Nyquist (a, c, e) and Bode (b, d, f) plots of 5Cr steel after immersion in simulated solution for 0-14 d at 50oC (a, b), 70oC (c, d) and 90oC (e, f)
Fig.9  Equivalent circuit diagrams of EIS of 5Cr steel after immersion in simulated solution under the different conditions of temperature and immersion time: (a) 0-14 d at 50oC, 0-3 d at 70oC and 0 d at 90oC, (b) 7-14 d at 70oC, (c) 1-3 d at 90oC, (d) 7-14 d at 90oC

Time

d

Rs

Ω·cm2

Cf

μF·cm-2

Rt

Ω·cm2

Ydl

S·s n ·cm-2

ndl

Rc

Ω·cm2

00.71853.261.9441.342 × 10-40.6747424.3
11.26233.2142.1806.043 × 10-40.74611986.0
31.08946.7828.8801.077 × 10-40.73262133.0
71.37637.3042.1905.963 × 10-40.76371740.0
129.23272.1491.4802.330 × 10-40.81622976.0
1410.95085.26120.002.270 × 10-40.83182982.0
Table 3  Fitting parameters of EIS of 5Cr steel immersed at 50oC for different time

Time

d

Rs

Ω·cm2

Cf

μF·cm-2

Rt

Ω·cm2

Yf

S·s n ·cm-2

nf

Ydl

S·s n ·cm-2

ndl

Rc

Ω·cm2

00.70848.8826.61//1.026 × 10-40.6746627.2
11.01239.6163.10//1.140 × 10-40.70222136.0
31.39925.2362.71//2.191 × 10-40.72692384.0
712.545/59.442.811 × 10-40.70952.667 × 10-40.72865673.0
1210.320/59.613.020 × 10-40.75033.019 × 10-40.75045662.0
1411.200/70.804.242 × 10-40.77804.229 × 10-40.77905394.0
Table 4  Fitting parameters of EIS of 5Cr steel immersed at 70oC for different time

Time

d

Rs

Ω·cm2

Cf

μF·cm-2

Rt

Ω·cm2

Ydl(Ydl1)

S·s n ·cm-2

ndl(ndl1)

Ydl2

S·s n ·cm-2

ndl2

Rc1

Ω·cm2

Rc2

Ω·cm2

Lθ

H·cm2

RL

Ω·cm2

00.858013.052.607.841 × 10-40.6048//1117.0///
10.69241.72.291.562 × 10-40.7939//1317.0/41.8630.76
31.63204.35.293.556 × 10-40.7390//1511.0/81.6531.42
76.452012.7172.191.063 × 10-40.383918.850 × 10-40.7600177.25623.7//
121.171032.4179.205.494 × 10-40.594015.240 × 10-40.6762212.95277.8//
144.242041.2136.2812.900 × 10-40.65763.193 × 10-40.5784123.25996.4//
Table 5  Fitting parameters of EIS of 5Cr steel immersed at 90oC for different time
Fig.10  Distribution of corrosion potential (a-d) and current density (e-h) of 5Cr steel wire beam electrode after immersion at 70oC for different time
Fig.11  Distributions of corrosion potential (a-d) and current density (e-h) of 5Cr steel wire beam electrode after immersion at 70oC for different time
Fig.12  Distributions of corrosion potential (a-d) and current density (e-h) of 5Cr steel wire beam electrode after immersion at 90oC for different time
1 Hua Y, Mohammed S, Barker R, et al. Comparisons of corrosion behaviour for X65 and low Cr steels in high pressure CO2-saturated brine [J]. J. Mater. Sci. Technol., 2020, 41: 21
doi: 10.1016/j.jmst.2019.08.050
2 Zhang S H, Hou L F, Du H, et al. A study on the interaction between chloride ions and CO2 towards carbon steel corrosion [J]. Corros. Sci., 2020, 167: 108531
doi: 10.1016/j.corsci.2020.108531
3 Das Chagas Almeida T, Elaine Bandeira M C, Moreira R M, et al. New Insights on the role of CO2 in the mechanism of carbon steel corrosion [J]. Corros. Sci., 2017, 120: 239
doi: 10.1016/j.corsci.2017.02.016
4 Du M, Zhu S D, Zhang X Y, et al. Research progress in formation and formation mechanism of CO2 corrosion scale on Cr containing low alloy steel [J]. Corros. Sci. Prot. Technol., 2019, 31: 335
杜 明, 朱世东, 张骁勇 等. 含Cr低合金钢的CO2腐蚀产物膜形成及机理研究进展 [J]. 腐蚀科学与防护技术, 2019, 31: 335
5 Escrivà-Cerdán C, Ooi S W, Joshi G R, et al. Effect of tempering heat treatment on the CO2 corrosion resistance of quench-hardened Cr-Mo low-alloy steels for oil and gas applications [J]. Corros. Sci., 2019, 154: 36
doi: 10.1016/j.corsci.2019.03.036
6 Wang T, Wang X, Li Z R, et al. Comparison on failures of long-distance oil & gas pipelines at home and abroad [J]. Oil Gas Storage Transp., 2017, 36: 1258
王 婷, 王 新, 李在蓉 等. 国内外长输油气管道失效对比[J]. 油气储运, 2017, 36: 1258
7 Bai H T, Yang M, Dong X W, et al. Research progress on CO2 corrosion product scales of carbon steels [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 295
白海涛, 杨 敏, 董小卫 等. CO2腐蚀产物膜的研究进展 [J]. 中国腐蚀与防护学报, 2020, 40: 295
doi: 10.11902/1005.4537.2019.150
8 Zhu J Y, Xu L N, Xu M X. Electrochemical impedance spectroscopy study of the corrosion of 3Cr pipeline steel in simulated CO2-saturated oilfield formation waters [J]. Corrosion, 2015, 71: 854
doi: 10.5006/1494
9 Jun T Y, Shiti Y. The effects of inhomogeneity in organic coatings on electrochemical measurements using a wire beam electrode: Part II [J]. Prog. Org. Coat., 1991, 19: 257
doi: 10.1016/0033-0655(91)80028-H
10 Dong Z H, Shi W, Guo X P. Localized corrosion inhibition of carbon steel in carbonated concrete pore solutions using wire beam electrodes [J]. Acta Phys. Chim. Sin., 2011, 27: 127
董泽华, 石 维, 郭兴蓬. 用丝束电极研究模拟碳化混凝土孔隙液中缓蚀剂对碳钢局部腐蚀的抑制行为 [J]. 物理化学学报, 2011, 27: 127
11 Liu J, Zhang L W, Mu X L, et al. Studies of electrochemical corrosion of low alloy steel under epoxy coating exposed to natural seawater using the WBE and EIS techniques [J]. Prog. Org. Coat., 2017, 111: 315
12 Pan C Q, Zhong Q D, Yang J, et al. Investigating crevice corrosion behavior of 6061 Al alloy using wire beam electrode [J]. J. Mater. Res. Technol., 2021, 14: 93
doi: 10.1016/j.jmrt.2021.06.039
13 Teng L, Chen X. Research progress of galvanic corrosion in marine environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 531
滕 琳, 陈 旭. 海洋环境中金属电偶腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 531
14 Wen J Y, Song G H, Wei X Y, et al. Influence of Cr content on corrosion resistance of composite Ni/Ni-Cr/Ni-Cr-Al-Si films on Cu [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 638
温佳源, 宋贵宏, 韦小园 等. Cr含量对Cu合金表面Ni/Ni-Cr/Ni-Cr-Al-Si膜层耐蚀性的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 638
doi: 10.11902/1005.4537.2021.173
15 Yue X Q, Zhang L, Sun C, et al. A thermodynamic and kinetic study of the formation and evolution of corrosion product scales on 13Cr stainless steel in a geothermal environment [J]. Corros. Sci., 2020, 169: 108640
doi: 10.1016/j.corsci.2020.108640
16 Xu L, Xu J, Xu M B, et al. Corrosion behavior of 3% Cr casing steel in CO2-containing environment: a case study [J]. Open Pet. Eng. J., 2018, 11: 1
doi: 10.2174/1874834101811010001
17 Hassan Sk M, Abdullah A M, Qi J. The effects of Cr/Mo micro-alloying on the corrosion behavior of carbon steel in CO2-saturated (sweet) brine under hydrodynamic control [J]. J. Electrochem. Soc., 2018, 165: C278
18 Wang X H, Li Z S, Tang Y F, et al. Influence of Cr content on characteristics of corrosion product film formed on several steels in artifitial stratum waters containing CO2-H2S-Cl- [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1043
王小红, 李子硕, 唐御峰 等. CO2-H2S-Cl-共存的地层水环境中Cr含量对钢的腐蚀产物膜特性的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 1043
doi: 10.11902/1005.4537.2021.272
19 Cheng Q L, Tao B, Liu S, et al. Corrosion behaviour of Q235B carbon steel in sediment water from crude oil [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 126
程庆利, 陶 彬, 刘 栓 等. 原油沉积水对Q235B碳钢的腐蚀影响 [J]. 中国腐蚀与防护学报, 2017, 37: 126
doi: 10.11902/1005.4537.2016.212
20 Xu L N, Zhu J Y, Lu M X, et al. Electrochemical impedance spectroscopy study on the corrosion of the weld zone of 3Cr steel welded joints in CO2 environments [J]. Int. J. Min. Met. Mater., 2015, 22: 500
doi: 10.1007/s12613-015-1099-6
21 Cao C N. Principles of Corrosion Electrochemistry [M]. 2nd ed. Beijing: Chemical Industry Press, 2004: 185
曹楚南. 腐蚀电化学原理 [M]. 2版. 北京: 化学工业出版社, 2004: 185
22 Seo D I, Lee J B. Effects of competitive anion adsorption (Br-or Cl-) and semiconducting properties of the passive films on the corrosion behavior of the additively manufactured Ti-6Al-4V alloys [J]. Corros. Sci., 2020, 173: 108789
doi: 10.1016/j.corsci.2020.108789
23 Xie S L. Effects of AC on corrosion behavior of X70 steel in different soil environments [J]. Corros. Prot. Petrochem. Ind., 2022, 39(3): 6
谢丝莉. X70钢在不同土壤环境中的交流腐蚀行为研究 [J]. 石油化工腐蚀与防护, 2022, 39(3): 6
24 Ji K Q, Li G F, Zhao L. Pitting Behavior of two stainless steels in simulated heavy water reactor primary solution and 3.5%NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 653
纪开强, 李光福, 赵 亮. 两种不锈钢在模拟重水堆一回路溶液和 3.5%NaCl溶液中的点蚀行为 [J]. 中国腐蚀与防护学报, 2021, 41: 653
25 Gao Y, Jin Z Q, Li N. Influence of oxygen concentration on reinforcement corrosion in seawater sea-sand mortar based on wire beam electrode technique [J]. Bull. Chin. Ceram. Soc., 2022, 41: 2672
高 源, 金祖权, 李 宁. 利用丝束电极技术研究氧浓度对海水海砂砂浆中钢筋锈蚀的影响 [J]. 硅酸盐通报, 2022, 41: 2672
[1] YUAN Yu, XIANG Yong, LI Chen, ZHAO Xuehui, YAN Wei, YAO Erdong. Research Progress on Corrosion of CO2 Injection Well Tubing in CCUS System[J]. 中国腐蚀与防护学报, 2024, 44(1): 15-26.
[2] HU Jiezhen, SHANGGUAN Juyu, DENG Peichang, FENG Qilan, WANG Gui, WANG Peilin. Effect of Barnacle Adhesion on Corrosion Behavior of Q235 Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
[3] DENG Chengman, LIU Zhe, XIA Da-Hai, HU Wenbin. Localized Corrosion Mechanism of 5083-H111 Al Alloy in Simulated Dynamic Seawater Zone[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[4] LIU Ming, WANG Jie, ZHU Chunhui, ZHANG Yanxiao. Electrochemical Corrosion Behavior of 3D-printed NiTi Shape Memory Alloy in a Simulated Oral Environment[J]. 中国腐蚀与防护学报, 2023, 43(4): 781-786.
[5] YUAN Shicheng, WU Yanfeng, XU Changhui, WANG Xingqi, LENG Zhe, YANG Yange. Influence of Polyhydroxy Hyperdispersant on Anti-corrosion Property of Waterborne Epoxy Coatings[J]. 中国腐蚀与防护学报, 2023, 43(2): 289-300.
[6] WANG Tong, WANG Wei. Distribution of Relaxation Time of Polydimethylsiloxane Coatings During Self-healing Process[J]. 中国腐蚀与防护学报, 2023, 43(2): 337-344.
[7] MAO Yingchang, ZHU Yu, SUN Shengkai, QIN Zhenbo, XIA Da-Hai, HU Wenbin. Localized Corrosion of 5083 Al-alloy in Simulated Marine Splash Zone[J]. 中国腐蚀与防护学报, 2023, 43(1): 47-54.
[8] ZHAO Guoxian, WANG Yingchao, ZHANG Siqi, SONG Yang. Influence Mechanism of H2S/CO2-charging on Corrosion of J55 Steel in an Artificial Solution[J]. 中国腐蚀与防护学报, 2022, 42(5): 785-790.
[9] WANG Qixuan, LYU Wensheng, YANG Peng, ZHU Liyi, LIAO Wenjing, ZHU Yuanle. Corrosion of Stainless Steel Shell of Embedded Sensor in Tailings Pond[J]. 中国腐蚀与防护学报, 2022, 42(2): 331-337.
[10] LIANG Taihe, ZHU Xuemei, ZHANG Zhenwei, WANG Xinjian, ZHANG Yansheng. Corrosion Performance of Transition Layer at Interface of Oxide Scale/substrate Formed on Austenitic Steel Fe32Mn7Cr3Al2Si During High Temperature Oxidation[J]. 中国腐蚀与防护学报, 2022, 42(2): 317-323.
[11] CANG Yu, HUANG Yuhui, WENG Shuo, XUAN Fuzhen. Effect of Environmental Variables on Galvanic Corrosion Performance of Welded Joint of Nuclear Steam Turbine Rotor[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[12] CAO Jingyi, FANG Zhigang, LI Liang, FENG Yafei, WANG Xingqi, SHOU Haiming, YANG Yange, CHU Guangzhe, YIN Wenchang. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Fresh Water and Salt Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[13] CAO Jingyi, FANG Zhigang, FENG Yafei, LI Liang, YANG Yange, SHOU Haiming, WANG Xingqi, ZANG Bolin. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Reverse Osmosis Water and Conditioned Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[14] CAO Jingyi, YANG Yange, FANG Zhigang, SHOU Haiming, LI Liang, FENG Yafei, WANG Xingqi, CHU Guangzhe, ZHAO Yi. Failure Behavior of Fresh Water Tank Coating in Different Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[15] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
No Suggested Reading articles found!