Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (1): 47-58    DOI: 10.11902/1005.4537.2023.017
Current Issue | Archive | Adv Search |
Effect of Micro-alloying with Cr, N and Al on Corrosion Resistance of High Manganese Austenitic Steel in Acidic Salt Spray Environment
CHANG Xueting1, SONG Jiaqi1, WANG Bing2, WANG Dongsheng1(), CHEN Wencong1, WANG Haifeng3
1.School of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
2.Jiangnan Shipbuilding Group Co., Ltd., Shanghai 201913, China
3.State Key Laboratory of Solidification Technology, Northwestern Polytechnical University, Xi'an 710072, China
Cite this article: 

CHANG Xueting, SONG Jiaqi, WANG Bing, WANG Dongsheng, CHEN Wencong, WANG Haifeng. Effect of Micro-alloying with Cr, N and Al on Corrosion Resistance of High Manganese Austenitic Steel in Acidic Salt Spray Environment. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 47-58.

Download:  HTML  PDF(24658KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To further enhance the corrosion resistance of high manganese steel, the effect of adding micro-alloying elements such as Cr, N, and Al on the corrosion process and electrochemical properties of fully austenitic high manganese steel (HMS) in acidic salt spray environment was investigated. The corrosion performance and corrosion products of the HMS were assessed by means of mass loss method, field emission scanning electron microscopy (SEM), and white light interferometry, and the evolution of electrochemical properties of two HMSs (namely the micro-alloyed HMS (WH-HMS) and the un-alloyed HMS (PT-HMS)) was examined by electrochemical techniques such as dynamic potential polarization and AC impedance spectroscopy. The results show that with the prolongation of corrosion time, the formed oxide scale on Micro-alloyed HMS becomes much more compact and has much better corrosion resistance for long-cycle corrosion. The corrosion kinetics of the micro-alloyed high Mn steels follows ΔWWH= 4.44202 × 10-4t0.9618, in the contrast, the un-alloyed HMS follows ΔWPT= 8.74985 × 10-4t0.67759. The electrochemical results show that the corrosion current density of the two HMSs gradually decreases with increasing corrosion time, and the capacitive arc gradually increases. After 240 h corrosion, the micro-alloyed HMS presents the capacitive arc much greater than that of the untreated HMS, whereas the corresponding corrosion rate of 1.925 × 10-3 mm/a for the former is less than that of the later. The main reason for the better corrosion resistance of the micro-alloyed high manganese steel is that the micro-alloying of Cr, N, and Al reduces the precipitation of carbides within high manganese steel, the formed oxide scale is much compact with good adhesion to the substrate, therefore which can effectively hinder the attack of Cl- and thus provide better protectiveness for the micro-alloyed HMS.

Key words:  high manganese austenitic steel      salt spraying      micro-alloyed      corrosion rate      electrochemical measurement     
Received:  01 February 2023      32134.14.1005.4537.2023.017
ZTFLH:  TG174  
Fund: National key research and development program(2022YFB3705303);Technical Standard Project of Shanghai Science and Technology Commission(21DZ2205700);"Dawn" Plan of Shanghai Municipal Education Commission(19SG46);International Cooperation and Exchange Project of the Ministry of Science and Technology(CU03-29);Project of Shanghai Deep Sea Material Engineering Technology Center(19DZ2253100)
Corresponding Authors:  WANG Dongsheng, E-mail: wangds@shmtu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.017     OR     https://www.jcscp.org/EN/Y2024/V44/I1/47

Fig.1  Metallographic photos of WH-HMS (a) and PT-HMS (b)
Fig.2  Surface morphology of WH-HMS for 12 h (a), 48 h (c), 96 h (e), 168 h (g), 240 h (i) and PT-HMS for 12 h (b), 48 h (d), 96 h (f), 168 h (h), 240 h (j) after salt spray corrosion
Fig.3  3D morphologies of WH-HMS after salt spray corrosion for 0 h (a), 12 h (b), 48 h (c), 96 h (d), 168 h (e) and 240 h (f)
Fig.4  3D morphologies of PT-HMS after salt spray corrosion for 0 h (a), 12 h (b), 48 h (c), 96 h (d), 168 h (e) and 240 h (f)
Fig.5  Surface morphology of the rust removal layer of WH-HMS for 12 h (a), 48 h (c), 96 h (e), 168 h (g), 240 h (i) and PT-HMS for 12 h (b), 48 h (d), 96 h (f), 168 h (h), 240 h (j) after salt spray corrosion
Fig.6  Potentiodynamic polarization curves of WH-HMS (a) and PT-HMS (b) after salt spray corrosion for different time
Salt spray time / hEcorr / VSCEIcorr / 10-6A·cm-2βa / mV·dec-1βc / mV·dec-1C-rate / 10-3 mm·a-1

12

48

96

168

240

-0.7041

-0.6885

-0.7078

-0.7197

-0.6772

5.328

4.119

2.997

4.889

1.962

0.093

0.091

0.064

0.075

0.063

0.091

0.091

0.070

0.086

0.062

5.230

4.043

2.942

4.809

1.925

Table1  Polarization curve fitting results of WH-HMS
Salt spray time / hEcorr / VSCEIcorrr / 10-6A·cm-2βa / mV·dec-1βc / mV·dec-1C-rate / 10-3 mm·a-1

12

48

96

168

240

-0.6709

-0.7409

-0.7113

-0.7624

-0.7135

5.310

4.472

2.754

3.663

4.038

0.047

0.094

0.067

0.074

0.077

0.091

0.095

0.075

0.079

0.106

5.212

4.390

2.703

3.595

3.964

Table2  Polarization curve fitting results of PT-HMS
Fig.7  EIS of WH-HMS (a, c,e) and PT-HMS (b, d, f) and electrochemical equivalent circuit (g) after salt spray corrosion for different time
Salt spray time / hRS / Ω·cm²Qf / S n ·Ω-1·cm-2n1Rf / Ω·cm²Qdl / S n ·Ω-1·cm-2n2Rct / Ω·cm²
128.5088.170 × 10-40.7282742.098 × 10-30.3572600
488.7671.181 × 10-30.6938556.777 × 10-30.792270.6
9610.386.790 × 10-40.76910037.362 × 10-30.729272.5
1689.7568.407 × 10-40.742786.94.015 × 10-30.418447.0
24015.845.690 × 10-40.72634.035.223 × 10-50.9492077
Table 3  Equivalent circuit fitting results of WH-HMS after salt spray corrosion with different corrosion time
Salt spray time / hRS / Ω·cm²Qf / S n ·Ω-1·cm-2n1Rf / Ω·cm²Qdl / S n ·Ω-1·cm-2n2Rct / Ω·cm²
1210.881.746 × 10-30.666675.87.366 × 10-20.9572.99 × 107
4811.142.205 × 10-40.8126.4828.638 × 10-40.627982
969.8322.405 × 10-40.8503.5781.508 × 10-30.5651542
16814.081.057 × 10-30.64163.582.639 × 10-50.9261159
24013.985.275 × 10-40.64817.105.507 × 10-40.664983.4
Table 4  Equivalent circuit fitting results of PT-HMS after salt spray corrosion with different corrosion time
Fig.8  Variations of mass loss fitting curve (a) and corrosion rate (b) of WH-HMS and PT-HMS with time
SampleWR2n
WH-HMSW = 4.44202 × 10-4t0.96180.987270.9618
PT-HMSW = 8.74985 × 10-4t0.677590.992820.6776
Table 5  Fitting results of corrosion kinetic curves of two experimental steels
CorrosionSampleCorrosion rateMass loss
time / hmm·a-1g·cm-2
48WH-HMS0.57570.0107
PT-HMS1.07570.0176
96WH-HMS0.53530.0199
PT-HMS0.97880.0323
168WH-HMS0.45660.0297
PT-HMS0.92990.0677
240WH-HMS0.37450.0348
PT-HMS0.89820.0836
Table 6  Average corrosion rate and mass loss of two experimental steel
1 Liu J W, Yang J H, Wang C. Natural gas development pattern in China after pipeline network independence [J]. Nat. Gas Ind., 2020, 40(1): 132
刘剑文, 杨建红, 王 超. 管网独立后的中国天然气发展格局 [J]. 天然气工业, 2020, 40(1): 132
2 Li W, Wang Y C. The development trend and impact of global carbon-neutral LNG trade [J]. Int. Pet. Econ., 2022, 30(3): 72
李 伟, 王宇纯. 全球碳中和液化天然气贸易发展趋势及影响 [J]. 国际石油经济, 2022, 30(3): 72
3 Ye Z H, Wang A J, Yan Q, et al. Global pattern analysis of natural gas and the development strategy in China [J]. Acta Geosci. Sin., 2017, 38: 17
叶张煌, 王安建, 闫 强 等. 全球天然气格局分析和我国的发展战略 [J]. 地球学报, 2017, 38: 17
4 Zhong L, Wang Y, Jing J J, et al. Current status and prospect of development of LNG storage and transportation equipment in China [J]. China Heavy Equip., 2022, (4): 11
钟 林, 王 阳, 敬佳佳 等. 我国LNG产业储运装备发展现状与展望 [J]. 中国重型装备, 2022, (4): 11
5 Song P F. Thoughts on the coordinated development path of SNG, LNG industry and renewable energy under the background of "dual carbon" [J]. Pet. New Energy, 2022, 34(2): 88
宋鹏飞. “双碳”背景下煤制天然气与LNG产业及可再生能源协同发展路径的思考 [J]. 油气与新能源, 2022, 34(2): 88
6 Li J Q. Welding difficulties and control measures of 9%Ni steel in LNG inner tank [J]. Weld. Technol., 2019, 48(9): 150
李建权. LNG内罐9%Ni钢焊接难题及控制措施 [J]. 焊接技术, 2019, 48(9): 150
7 Du Q L, Kang S M, Li S T. Development of welding technology of ultra-low temperature high Manganese Steel and its application in LNG storage tank [J]. Technol. Innovation Appl., 2021, (11): 40
杜青林, 亢淑梅, 李顺涛. 超低温高锰钢焊接技术发展及在LNG储罐中的应用 [J]. 科技创新与应用, 2021, (11): 40
8 Luo Y, Wang C. Tendency in development of POSCO's ocean engineering steel [J]. Sichuan Metall., 2016, 38(6): 8
罗 晔, 王 超. 浦项制铁海洋工程用钢的研制方向 [J]. 四川冶金, 2016, 38(6): 8
9 Guo W, Cai Y, Hua X M. Development of low-temperature high manganese steel and its welding technology in LNG field [J]. Electric Weld. Mach., 2020, 50(11): 7
郭 伟, 蔡 艳, 华学明. LNG用低温高锰钢及其焊接技术发展 [J]. 电焊机, 2020, 50(11): 7
10 Liu D Y, Wang J X, Li J F, et al. Intergranular corrosion behavior of T6 aging treated micro-alloyed Al-Cu-Li alloys with Mg/Ag/Zn [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 183
刘丹阳, 汪洁霞, 李劲风 等. Mg, Ag, Zn微合金化Al-Cu-Li系铝锂合金T6态时效的晶间腐蚀行为 [J]. 中国腐蚀与防护学报, 2018, 38: 183
doi: 10.11902/1005.4537.2017.054
11 Li C S, Li K, Dong J B, et al. Mechanical behaviour and microstructure of Fe-20/27Mn-4Al-0.3C low magnetic steel at room and cryogenic temperatures [J]. Mater. Sci. Eng., 2021, 809A: 140998
12 Tang Y H, Li B, Zhang G F, et al. Effect of Al on the microstructure and corrosion resistance of high-Mn steel [J]. Mater. Lett., 2022, 320: 132286
doi: 10.1016/j.matlet.2022.132286
13 Fajardo S, Llorente I, Jiménez J A, et al. Effect of Mn additions on the corrosion behaviour of TWIP Fe-Mn-Al-Si austenitic steel in chloride solution [J]. Corros. Sci., 2019, 154: 246
doi: 10.1016/j.corsci.2019.04.026
14 Zhang D D, Qin C L, Chen C, et al. Effect of Mn content on corrosion resistance of 0.9C-xMn-2Cr-Mo high manganese steel in rain water [J]. Mater. Prot., 2020, 53(10): 39
张丹丹, 秦春丽, 陈 冲 等. Mn含量对轨道用0.9C-xMn-2Cr-Mo高锰钢在雨水中耐蚀性的影响 [J]. 材料保护, 2020, 53(10): 39
15 Su G Q, Gao X H, Huo S, et al. New insights into the corrosion behaviour of medium manganese steel exposed to a NaCl solution spray [J]. Constr. Build. Mater., 2020, 261: 119908
16 Pan C, Cui Y, Liu L, et al. Effect of temperature on corrosion behavior of low-alloy steel exposed to a simulated marine atmospheric environment [J]. J. Mater. Eng. Perform., 2020, 29: 1400
doi: 10.1007/s11665-020-04649-5
17 Zhang Y, Zhang X, Chen S Y, et al. Effect of phosphoric acid concentration on corrosion resistance and passivation film properties of 316L stainless steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 819
张 媛, 张 弦, 陈思雨 等. 磷酸浓度对316L不锈钢耐蚀性及钝化膜特性的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 819
18 Liu Q B, Liu Z D, Guo S Y, et al. Galvanic corrosion behavior of 5083 al-alloy and 30CrMnSiA steel in NaCl solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 883
刘泉兵, 刘宗德, 郭胜洋 等. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究 [J]. 中国腐蚀与防护学报, 2021, 41: 883
doi: 10.11902/1005.4537.2020.184
19 Chen H, Fan Z B, Chen Z J, et al. Effect of Cl- and HSO 3 - on corrosion behavior of 439 stainless steel used in construction [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 493
陈昊, 樊志彬, 陈志坚 等. Cl-与HSO 3 - 对建筑用439不锈钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 493
doi: 10.11902/1005.4537.2021.126
20 Davalos-Monteiro R. Observations of corrosion product formation and stress corrosion cracking on brass samples exposed to ammonia environments [J]. Mater. Res., 2019, 22: e20180077
doi: 10.1590/1980-5373-mr-2018-0077
21 Liu L L, Zhang H, Bi H Y, et al. Corrosion behavior of cold-rolled metastable Cr-Mn-Ni-N austenitic stainless steel in acidic NaCl solution [J]. J. Mater. Res. Technol., 2022, 19: 278
doi: 10.1016/j.jmrt.2022.05.054
22 Gnanarathinam A, Palanisamy D, Manikandan N, et al. Comparison of corrosion behavior on laser welded austenitic stainless steel [J]. Mater. Today: Proc., 2021, 39: 649
23 Ming N X, Wang Q S, He C, et al. Effect of temperature on corrosion behavior of X70 steel in an artificial CO2-containing formation water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 233
明男希, 王岐山, 何 川 等. 温度对X70钢在含CO2地层水中腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2021, 41: 233
doi: 10.11902/1005.4537.2020.049
24 Cheng M L, He P, Lei L L, et al. Comparative studies on microstructure evolution and corrosion resistance of 304 and a newly developed high Mn and N austenitic stainless steel welded joints [J]. Corros. Sci., 2021, 183: 109338
doi: 10.1016/j.corsci.2021.109338
25 Yan X Y, Yan L, Kang S M, et al. Corrosion behavior and electrochemical corrosion of a high manganese steel in simulated marine splash zone [J]. Mater. Res. Express, 2021, 8: 126507
doi: 10.1088/2053-1591/ac3e96
26 Zhang Y G, Chen Y L, Zhang Y, et al. Initial corrosion behavior and mechanism of 7B04 aluminum alloy under acid immersion and salt spray environments [J]. Chin. J. Aeronaut., 2022, 35: 277
27 Wang H R, Yu H, Kondo S, et al. Corrosion behaviour of Al-added high Mn austenitic steels in molten lead bismuth eutectic with saturated and low oxygen concentrations at 450oC [J]. Corros. Sci., 2020, 175: 108864
doi: 10.1016/j.corsci.2020.108864
28 Liu J Y, Wu Y S, Wei L, et al. Study on the formation of carbide in high manganese steel and its solution at elevated temperature [J]. J. Mater. Eng., 2003, (3): 24
刘俊友, 伍燕生, 魏 立 等. 高锰钢中碳化物的形成特征及其高温固溶行为研究 [J]. 材料工程, 2003, (3): 24
29 Cui Y, Du H, Xu L P, et al. Effects of carbide precipitation on tensile and corrosion properties of the CrFeCoNi high-entropy alloy [J]. Spec. Cast. Nonferrous Alloy., 2019, 39: 1130
崔 宇, 杜 辉, 徐丽萍 等. 碳化物析出对CrFeCoNi高熵合金拉伸和腐蚀性能的影响 [J]. 特种铸造及有色合金, 2019, 39: 1130
30 Su G Q, Gao X H, Zhang D Z, et al. Offset effect of chromium on the adverse impact of manganese in a low-C medium-Mn steel with reversed austenite in the neutral salt spray condition [J]. Corrosion, 2017, 73: 1367
doi: 10.5006/2433
31 Alcántara J, Chico B, Díaz I, et al. Airborne chloride deposit and its effect on marine atmospheric corrosion of mild steel [J]. Corros. Sci., 2015, 97: 74
doi: 10.1016/j.corsci.2015.04.015
32 Li H, Liu Y H, Zhao L H, et al. Corrosion behavior of 300M ultra high strength steel in simulated marine environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 87
李 晗, 刘元海, 赵连红 等. 300M超高强度钢在模拟海洋环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 87
33 Dong B J, Liu W, Zhang T Y, et al. Corrosion failure analysis of low alloy steel and carbon steel rebar in tropical marine atmospheric environment: outdoor exposure and indoor test [J]. Eng. Failure Anal., 2021, 129: 105720
doi: 10.1016/j.engfailanal.2021.105720
34 Zhao T L, Liu K, Li Q. Comparison of the rusting behaviors of S450EW weathering steel under continuous spray and wet/dry cycling [J]. Constr. Build. Mater., 2021, 309: 125211
doi: 10.1016/j.conbuildmat.2021.125211
35 Liu X C, Zhang Z Z, Liu K, et al. Influence of copper, chromium and nickel on the corrosion resistance property of high strength weathering resistant steel [J]. Steel Rolling, 2019, 36(6): 17
刘晓翠, 张转转, 刘 锟 等. Cu、Cr、Ni元素对高强耐候钢腐蚀稳定性的影响 [J]. 轧钢, 2019, 36(6): 17
36 Tian J, Li G M, Chen S. Electrochemical study on effects of Si contents on the corrosion resistance of low alloy steels to sea water [J]. Equip. Environ. Eng., 2016, 13(2): 110
田 骏, 李国明, 陈 珊. Si对低合金钢耐海水腐蚀性能影响的电化学研究 [J]. 装备环境工程, 2016, 13(2): 110
37 Wu X Q, Fu Y, Ke W, et al. Effects of nitrogen on passivity of nickel-free stainless steels by electrochemical impedance spectroscopy analysis [J]. J. Mater. Eng. Perform., 2015, 24: 3607
doi: 10.1007/s11665-015-1646-3
38 Cao C N. On the impedance plane displays for irreversible electrode reactions based on the stability conditions of the steady-state—I. One state variable besides electrode potential [J]. Electrochim. Acta, 1990, 35: 831
doi: 10.1016/0013-4686(90)90077-D
39 Zhao P F, Wen L, Guo W Y, et al. Accelerated corrosion behavior and mechanism of high-strength aluminum alloy by cyclic salt-spray test [J]. Surf. Technol., 2022, 51(10): 260
赵朋飞, 文 磊, 郭文营 等. 高强铝合金循环盐雾加速腐蚀行为与机理研究 [J]. 表面技术, 2022, 51(10): 260
40 Shen S Y, Wang D S, Sun S B, et al. Corrosion behavior in artificial seawater of subzero treated EH40 marine steel suitable for extremely cold environments [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 151
沈树阳, 王东胜, 孙士斌 等. 深冷处理对EH40极寒环境船用钢板的海水腐蚀性能影响 [J]. 中国腐蚀与防护学报, 2020, 40: 151
doi: 10.11902/1005.4537.2019.010
41 Wang S X, Du N, Liu D X, et al. Corrosion kinetics and the relevance analysis for X80 steel in a simulated acidic soil solution and outdoor red soil [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 18
王帅星, 杜 楠, 刘道新 等. X80钢在酸性红壤模拟液及室外红壤中的腐蚀动力学规律及相关性分析 [J]. 中国腐蚀与防护学报, 2019, 39: 18
doi: 10.11902/1005.4537.2017.194
42 Zhao Y, Cao J Y, Fang Z G, et al. Corrosion behavior of A517Gr.Q marine steel in simulated corrosive condition of marine splashing zone [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 921
赵 伊, 曹京宜, 方志刚 等. A517Gr. Q海工钢在模拟海洋飞溅区的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 921
[1] WANG Quanrun, HOU Jin, HOU Baorong, TIAN Huiwen. Research Progress of Analytical Methods for Vapor Phase Inhibitors[J]. 中国腐蚀与防护学报, 2023, 43(6): 1189-1202.
[2] XING Xuesong, FAN Baitao, ZHU Xinyu, ZHANG Junying, CHEN Changfeng. Corrosion Characteristics of P110SS Casing Steel for Ultra-deep Well in Artificial Formation Water with Low H2S and High CO2 Content[J]. 中国腐蚀与防护学报, 2023, 43(3): 611-618.
[3] YANG Xiangyu, GUAN Lei, LI Yu, ZHANG Yongkang, WANG Guan, YAN Dejun. Numerical Simulation and Experimental Study on Erosion-corrosion of Square Elbow Based on Orthogonal Test[J]. 中国腐蚀与防护学报, 2022, 42(6): 979-987.
[4] MEI Jiaxue, DU Zunfeng, ZHU Haitao. Ultimate Bearing Capacity of Ship Structure Based on Random Corrosion[J]. 中国腐蚀与防护学报, 2022, 42(4): 662-668.
[5] WANG Qixuan, LYU Wensheng, YANG Peng, ZHU Liyi, LIAO Wenjing, ZHU Yuanle. Corrosion of Stainless Steel Shell of Embedded Sensor in Tailings Pond[J]. 中国腐蚀与防护学报, 2022, 42(2): 331-337.
[6] ZHU Hailin, LU Xiaomeng, LI Xiaofen, WANG Junxia, LIU Jianhua, FENG Li, MA Xuemei, HU Zhiyong. Synthesis, Corrosion Inhibition and Bactericidal Performance of an Ammonium Salt Surfactant Containing Thiadiazole[J]. 中国腐蚀与防护学报, 2022, 42(1): 51-59.
[7] GE Pengli, ZENG Wenguang, XIAO Wenwen, GAO Duolong, ZHANG Jiangjiang, LI Fang. Effect of Applied Stress and Medium Flow on Corrosion Behavior of Carbon Steel in H2S/CO2 Coexisting Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[8] JIA Shichao, GAO Jiaqi, GUO Hao, WANG Chao, CHEN Yangyang, LI Qi, TIAN Yimei. Influence of Water Quality on Corrosion of Cast Iron Pipe in Reclaimed Water[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[9] ZHAO Guoxian,HUANG Jing,XUE Yan. Corrosion Behavior of Materials Used for Surface Gathering and Transportation Pipeline in an Oilfield[J]. 中国腐蚀与防护学报, 2019, 39(6): 557-562.
[10] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[11] Shaokun YAN,Dajiang ZHENG,Jiang WEI,Guangling SONG,Lian ZHOU. Electrochemical Activation of Passivated Pure Titanium in Artificial Seawater[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[12] Li LIU,Sirong YU. Effect of Gd Addition on Corrosion Behavior of AM60 Magnesium Alloy[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[13] Yang LI, Chengyuan LI, Xu CHEN, Jiaxing YANG, Xintong WANG, Nanxi MING, Zhenze HAN. Gray Relationship Analysis on Corrosion Behavior of Super 13Cr Stainless Steel in Environments of Marine Oil and Gas Field[J]. 中国腐蚀与防护学报, 2018, 38(5): 471-477.
[14] Fengxuan SONG,Qizhong ZHAO,Feilong LI,Yuelu REN,Kui HUANG,Xinming ZHANG. Effect of Aging Treatment on Corrosion Rate of 7050 Al-alloy Plate[J]. 中国腐蚀与防护学报, 2017, 37(3): 287-292.
[15] Ming ZHU,Yong YU,Huihui ZHANG. Corrosion Behavior of L245 Steel in Simulated Oilfield Produced Water at Different Temperatures[J]. 中国腐蚀与防护学报, 2017, 37(3): 300-304.
No Suggested Reading articles found!