Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (1): 91-99    DOI: 10.11902/1005.4537.2023.057
Current Issue | Archive | Adv Search |
Correlation of Corrosion Information Aquired by Indoor Acceleration Testing and by Real Low Temperature Marine Atmosphere Exposure in Polar Region for Ni-Cr-Mo-V Steel
LENG Wenjun1,2, SHI Xizhao1, XIN Yonglei2, YANG Yange3, WANG Li2, CUI Zhongyu1(), HOU Jian2
1.School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
2.Science and Technology on Marine Corrosion and Protection Laboratory, Luoyang Ship Material Research Institute, Qingdao 266237, China
3.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

LENG Wenjun, SHI Xizhao, XIN Yonglei, YANG Yange, WANG Li, CUI Zhongyu, HOU Jian. Correlation of Corrosion Information Aquired by Indoor Acceleration Testing and by Real Low Temperature Marine Atmosphere Exposure in Polar Region for Ni-Cr-Mo-V Steel. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 91-99.

Download:  HTML  PDF(10333KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to investigate the applicability of the proposed indoor accelerated test spectrum, which aims to simulate the low temperature marine environment in the polar region, and the corrosion mechanism of low alloy steel exposed in the real polar low temperature atmospheric environment, therefore, the Ni-Cr-Mo-V steels were subjected to indoor accelerated test in lab and to outdoor exposure test in Zhongshan station at the polar region respectively, then the corrosion behavior of the tested steels was comparatively studied by means of mass loss measurement, scanning electron microscope, and laser confocal microscope. The results revealed that the corrosion rate of the steel is 11.3 μm/a, and the corrosion products are composed of Fe3O4, γ-FeOOH, α-FeOOH and β-FeOOH. The presence of the large amount of β-FeOOH indicates that the rust scale formed in low temperature environment has poor protectiveness. The low temperature atmospheric corrosion is mainly uniform corrosion. The freeze-thaw cycle causes the alteration of electrolyte concentration on the surface of test steel, which results in the formation of pitting corrosion beneath the rust scale. During the freeze-thaw cycle, the alternation of stresses caused by the cyclical solid-liquid phase transition of the water in the rust scale and the difference of the thermal expansion coefficient between the rust scale and the metal matrix could lead to the cracking of the rust scale.

Key words:  polar environment      accelerated corrosion      corrosion products      freeze-thaw cycle     
Received:  03 March 2023      32134.14.1005.4537.2023.057
ZTFLH:  TG174  
Fund: Key Research and Development Program of Shandong Province(2020CXGC010305);Natural Science Foundation of Shandong Province(ZR2022YQ44)
Corresponding Authors:  CUI Zhongyu, E-mail: cuizhongyu@ouc.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.057     OR     https://www.jcscp.org/EN/Y2024/V44/I1/91

Fig.1  Environmental parameters of Zhongshan station during 2019 to 2021: (a) annual average temperature data, (b) annual average humidity data
Fig.2  Schematic diagram of indoor simulation and acceleration environment test device (a) and environmental spectrum period (b)
Fig.3  Comparison of corrosion rates of Ni-Cr-Mo-V Steel: (a) one period of indoor accelerated corrosion test, (b) outdoor at Zhongshan station in Antarctica for 1 a
MaterialExposed positionClimaticTime / aCorrosion rate / μm·a-1
Q235Zhongshan stationPolar marine atmosphere116.3
Q460Zhongshan station110.8
Q960Zhongshan station115.8
Ni-Cr-Mo-VZhongshan station113.0
Q235QingdaoTemperate marine atmosphere118.7
Q460Qingdao117.0
Q960Qingdao117.3
Q235GuangzhouSubtropical marine atmosphere[9]132.6
Q345Guangzhou130.9
Q235Wanning163.6
Q345Wanning158.8
Q235MaldivesTropical marine atmosphere[10]1119.0
WSMaldives174.0
3Ni WSMaldives149.0
Table 1  Corrosion rate of steel materials in different atmospheric environments
Fig.4  Surface morphologies of corrosion products of Ni-Cr-Mo-V steel under accelerated corrosion environment spectrum (a, b) and atmospheric corrosion of Zhongshan station (c, d)
Fig.5  Section morphologies of corrosion products of Ni-Cr-Mo-V steel under accelerated corrosion environment spectrum (a, b) and atmospheric corrosion of Zhongshan station (c, d)
Fig.6  Surface corrosion morphology of Ni-Cr-Mo-V steel under accelerated corrosion environment spectrum (a, b) and atmospheric corrosion of Zhongshan station (c, d)
Fig.7  XRD (a) and the semi-quantitative analysis (b) of corrosion products formed on Ni-Cr-Mo-V steel under indoor simulation and Antarctic atmospheric environment
Fig.8  Atmospheric corrosion mechanism under low temperature and ice freeze-thaw environment
1 Morcillo M, Chico B, De La Fuente D, et al. Atmospheric corrosion of reference metals in Antarctic sites [J]. Cold Regions Sci. Technol., 2004, 40: 165
doi: 10.1016/j.coldregions.2004.06.009
2 Rosales B, Fernandez A. Parameters controlling steel and copper corrosion nucleation and propagation in Antarctica [C] Nace Northern Area-western Region Conference, "Shining a Northern Light on Corrosion", Anchorage, America, 2001
3 Maxwell P, Viduka A. Antarctic Observations: On metal corrosion at three historic huts on Ross Island [C]. Proceedings of Metal, National Museum of Australia, Australia, 2004
4 Qu S P, Zhao X Y, Xuan X Y. New challenges on corrosion and protection of polar steel [J/OL]. Mater. Sci. Technol., 2022: 1. (2022-10-13).
屈少鹏, 赵行娅, 轩星雨. 极地钢铁材料的腐蚀与防护面临新挑战 [J/OL]. 材料科学与工艺, 2022: 1. (2022-10-13).
5 Cui Z Y, Ge F, Wang X. Corrosion mechanism of materials in three typical harsh marine atmospheric environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 403
崔中雨, 葛 峰, 王 昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制 [J]. 中国腐蚀与防护学报, 2022, 42: 403
doi: 10.11902/1005.4537.2021.165
6 Luo H, Li X G, Dong C F, et al. Research on atmosphere exposure in tropical marine and accelerated corrosion test of 304 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 193
骆 鸿, 李晓刚, 董超芳 等. 304不锈钢在热带海洋大气下暴露实验和加速腐蚀实验研究 [J]. 中国腐蚀与防护学报, 2013, 33: 193
7 Wei H H, Lei T Q, Zheng D D, et al. Corrosion characteristics of butt welds of Q690 high strength steel in laboratory test as an enviormental simulation of ocean splash zone [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 675
魏欢欢, 雷天奇, 郑东东 等. Q690高强钢对接焊缝加速腐蚀试验研究 [J]. 中国腐蚀与防护学报, 2022, 42: 675
doi: 10.11902/1005.4537.2021.191
8 Leng W J, Cui Z Y, Wang X, et al. Preparation and study of accelerated corrosion test spectrum of low alloy high strength steel in polar environment [J]. Dev. Appl. Mater., 2023, 38(3): 31
冷文俊, 崔中雨, 王 昕 等. 低合金高强钢极地环境加速腐蚀试验谱编制与研究 [J]. 材料开发与应用, 2023, 38(3): 31
9 Huang J C, Meng X B, Huang Y H, et al. Atmospheric corrosion of carbon steels in tropical and subtropical climates in Southern China [J]. Mater. Corros., 2020, 71: 1400
10 Wu W, Cheng X Q, Zhao J B, et al. Benefit of the corrosion product film formed on a new weathering steel containing 3% nickel under marine atmosphere in Maldives [J]. Corros. Sci., 2020, 165: 108416
11 Zhang P P, Yang Z M, Chen Y, et al. Corrosion behavior of Cr-Ni-Cu low alloy cast steel in marine atmospheric environment [J]. J. Iron Steel Res., 2017, 29: 128
张飘飘, 杨忠民, 陈 颖 等. Cr-Ni-Cu系低合金铸钢在海洋大气环境中的腐蚀行为 [J]. 钢铁研究学报, 2017, 29: 128
12 Oyabu M, Nomura K, Koike Y, et al. Mössbauer and XRD analysis of corrosion products on weathering steel treated by wet-dry cycles using various solutions [J]. Hyperf. Interact., 2016, 237: 68
doi: 10.1007/s10751-016-1244-2
13 Morcillo M, González-Calbet J M, Jiménez J A, et al. Environmental conditions for akaganeite formation in marine atmosphere mild steel corrosion products and its characterization [J]. Corrosion, 2015, 71: 872
doi: 10.5006/1672
14 Li S X, Hihara L H. A micro-raman spectroscopic study of marine atmospheric corrosion of carbon steel: the effect of akaganeite [J]. J. Electrochem. Soc., 2015, 162: C495
doi: 10.1149/2.0881509jes
15 Xiao H G. Mechanism of formation and evolution process of akaganeite on Q235 during marine atmospheric corrosion [D]. Beijing: University of Chinese Academy of Sciences, 2017
肖海刚. 海洋大气腐蚀中β-FeOOH在Q235表面形成及演化机制研究 [D]. 北京: 中国科学院大学, 2017
16 Huang W L, Yan M, Mulvaney R, et al. Spatial variability of glaciochemistry along a transect from Zhongshan station to LGB69, Antarctica [J]. Atmosphere, 2021, 12: 393
17 Man C, Guo J Y, Sun Y X, et al. Failure behaviour of some classical protective coatings in antarctic environments [J]. Surf. Technol., 2022, 51(6): 27
满 成, 国景一, 孙议祥 等. 典型防护涂层体系在南极大气环境中的失效行为研究 [J]. 表面技术, 2022, 51(6): 27
18 Xu G J, Chen L Q, Zhang M M, et al. Year-round records of bulk aerosol composition over the Zhongshan Station, Coastal East Antarctica [J]. Air Qual. Atmos. Health, 2019, 12: 271
doi: 10.1007/s11869-018-0642-9
19 Ma Y T, Li Y, Wang F H. The effect of β-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment [J]. Mater. Chem. Phys., 2008, 112: 844
doi: 10.1016/j.matchemphys.2008.06.066
20 Tanaka H, Mishima R, Hatanaka N, et al. Formation of magnetite rust particles by reacting iron powder with artificial α-, β-and γ-FeOOH in aqueous media [J]. Corros. Sci., 2014, 78: 384
doi: 10.1016/j.corsci.2013.08.023
21 Fu T, Song G L, Zheng D J. Corrosion damage in frozen 3.5 wt. % NaCl solution [J]. Mater. Corros. Werkstoffe Korros., 2021, 72: 1396
22 Inagawa A, Maeda M, Uehara N. In situ visualization of ferrous ions dissolved from pure iron wire into thin frozen aqueous solution films by combination of microscopy and image processing [J]. Sensors Mater., 2022, 34: 915
23 Ge F. Corrosion behavior and mechanism of typical metals in Antarctic atmosphere [D]. Qingdao: Ocean University of China, 2021
葛 峰. 南极大气条件下典型金属的腐蚀行为及机理研究 [D]. 青岛: 中国海洋大学, 2021
24 Wang T, Meng H M, Guo W H, et al. Influence of dry-wet ratio on electrochemical corrosion behavior of CrNiMoV steel in 120 mmol/L NH4H2PO4 solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 948
王 通, 孟惠民, 郭维华 等. 干湿比对CrNiMoV钢在120 mmol/L NH4H2PO4溶液中电化学腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 948
[1] BAI Xuehan, DING Kangkang, ZHANG Penghui, FAN Lin, ZHANG Huixia, LIU Shaotong. Accelerated Corrosion Test of AH36 Ship Hull Steel in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 187-196.
[2] PAN Dailong, SI Xiaodong, LV Jinhong. Effect of Flow Velocity on Flow Accelerated Corrosion Rate of Carbon Steel Elbow[J]. 中国腐蚀与防护学报, 2023, 43(5): 1064-1070.
[3] ZHOU Zhiping, WU Dakang, ZHANG Hongfu, ZHANG Lei, LI Mingxing, ZHANG Zhixin, ZHONG Xiankang. Tensile Property of L80 Steel in Air at 25-350 ℃ and Its Corrosion Behavior in Simulated Casing Service Conditions at 150-350 ℃[J]. 中国腐蚀与防护学报, 2023, 43(3): 601-610.
[4] LI Han, LIU Yuanhai, ZHAO Lianhong, CUI Zhongyu. Corrosion Behavior of 300M Ultra High Strength Steel in Simulated Marine Environment[J]. 中国腐蚀与防护学报, 2023, 43(1): 87-94.
[5] XUE Fang, LIU Liangyu, TAN Long. Aerobic Corrosion Process of Q235 Steel in NaHCO3 Solutions[J]. 中国腐蚀与防护学报, 2022, 42(5): 771-778.
[6] ZHU Yichen,LIU Guangming,LIU Xin,PEI Feng,TIAN Xu,SHI Chao. Investigation on Interrelation of Field Corrosion Test and Accelerated Corrosion Test of Grounding Materials in Red Soil Environment[J]. 中国腐蚀与防护学报, 2019, 39(6): 550-556.
[7] Qi GUI, Dajiang ZHENG, Guangling SONG. Electrochemically Accelerated Evaluation of Protectiveness for an Alkyd Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[8] Shuangqing SUN,Qifei ZHENG,Chunling LI,Xiumin WANG,Songqing HU. Effect of Corrosion Products on Long-term Atmospheric Corrosion of Pure Aluminum 8A06[J]. 中国腐蚀与防护学报, 2017, 37(2): 110-116.
[9] WANG Zhenyao, YU Quancheng, CHEN Junjun, WANG Jun, XU Song, HU Botao. Atmospheric Corrosion Behavior of P265GH Steel and Q235 Steel under Dry/Humid/Immersion Alternative Condition[J]. 中国腐蚀与防护学报, 2014, 34(1): 53-58.
[10] YANG Chao,,ZHANG Huixia,GUO Weimin,FU Yubin. Effects of H2O2 Addition on Corrosion Behavior of High-strength Low-alloy Steel in Seawater[J]. 中国腐蚀与防护学报, 2013, 33(3): 205-210.
[11] PAN Taijun; LIN Yifan; HU Jing. ACCELERATED CORROSION BEHAVIOR OF Fe-Al ALLOYS UNDER KCl-ZnCl2 DEPOSITS[J]. 中国腐蚀与防护学报, 2010, 30(1): 58-61.
[12] ;. Study on Corrosion Behavior on Joint Section of Aircraft Aluminium Alloy Structure[J]. 中国腐蚀与防护学报, 2007, 27(6): 334-337 .
[13] ;. Corrosion Behavior of N80 Steel in Simulated Water from deep Gaswell Containing Carbon Dioxide[J]. 中国腐蚀与防护学报, 2007, 27(1): 8-13 .
[14] Qiaoxia Li; Zhenyao Wang; Wei Han; Enhou Han. CORROSION BEHAVIOR OF WEATHERING STEEL IN AWET/DRY ENVIRONMENT CONTAINING MgCl2[J]. 中国腐蚀与防护学报, 2006, 26(3): 136-410 .
[15] Zhenyao Wang; Teng Ma; Wei Han; Guocai Yu. Corrosion behaviors of Al alloy LC4 in simulated polluted atmospheric environments[J]. 中国腐蚀与防护学报, 2005, 25(6): 321-326 .
No Suggested Reading articles found!