Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (6): 1407-1412    DOI: 10.11902/1005.4537.2022.362
Current Issue | Archive | Adv Search |
Spreading and Corrosion Behavior of CMAS Melt on Different Materials for Thermal Barrier Coating
QU Weiwei1,2, CHEN Zehao3, PEI Yanling4, LI Shusuo2(), WANG Fuhui3
1.AECC Shenyang Engine Research Institute, Shenyang 110015, China
2.Research Institute of Aero-Engine, Beihang University, Beijing 100191, China
3.Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
4.Research Institute for Frontier Science, Beihang University, Beijing 100191, China
Cite this article: 

QU Weiwei, CHEN Zehao, PEI Yanling, LI Shusuo, WANG Fuhui. Spreading and Corrosion Behavior of CMAS Melt on Different Materials for Thermal Barrier Coating. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1407-1412.

Download:  HTML  PDF(4178KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The coating failure of blades caused by low melting point silicate composed of CaO,MgO,Al2O3,SiO2 has been widely concerned for an aero-engine in service. Therefore, the spreading and corrosivity of CMAS melt on five ceramic materials, i.e. Y2O3,La2Ce2O7,Gd2Zr2O7,Al2O3 and 12YSHf, as candidate materials for thermal barrier coatings, was assessed in air at 1250 oC for 16 h, in comparison with 7YSZ, the commonly used ceramic material. It can be found that 12YSHf and Al2O3 show good effect in slowing down the spreading of CMAS melt. In addition, the high temperature reaction interfaces of CMAS/Al2O3 and CMAS/La2Ce2O7 are all thinner than the others, which means that Al2O3 and La2Ce2O7 have better resistance to CMAS. Overall, the effect of Al2O3 in retarding the spreading and corrosion of CMAS is the most outstanding.

Key words:  CMAS melt      materials for thermal barrier coating      spreading behavior      hot corrosion behavior     
Received:  22 November 2022      32134.14.1005.4537.2022.362
ZTFLH:  TG174  
Fund: Natural Science Foundation of Liaoning Province(2022-MS-104);China Postdoctoral Science Foundation(ZX20230009)
Corresponding Authors:  LI Shusuo, E-mail: lishs@buaa.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.362     OR     https://www.jcscp.org/EN/Y2023/V43/I6/1407

CeramicCrystal structureSintering processRelative density
Y2O3Fluorite1600 ℃/10 h93%
7YSZFluorite1400 ℃/6 h90%
12YSHfFluorite1580 ℃/5 h96%
La2Ce2O7Fluorite1500 ℃/4 h98%
Gd2Zr2O7Pyrochlore1600 ℃/10 h98%
Al2O3Hexagonal close-packed99 Al2O399%
Table 1  Basic information about ceramic samples
Fig.1  DSC curves of CMAS mixed powders (a) and shrinkage factors of CMAS cylinder on various oxide ceramics during heating (b)
Fig.2  Variations of cosine of contact angle of CMAS melt on various test ceramics with temperature
Fig.3  XRD patterns of different ceramics with CMAS deposit after treatment at 1250 ℃ for 16 h
Fig.4  Cross-sectional morphologies of the reaction layers of different ceramic samples with CMAS deposit after treatment at 1250 ℃ for 16 h: (a) YSZ, (b) YSHf, (c) Al2O3, (d) LCO, (e) GZO, (f) Y2O3
Fig.5  Atomic fraction of Ca (a), Mg (b), Al (c) and Si (d) in the different distances from the reaction layers of various ceramic samples
1 Guo H B, Gong S K, Xu H B. Research progress on new high/ultra-high temperature thermal barrier coatings and processing technologies [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2722
郭洪波, 宫声凯, 徐惠彬. 新型高温/超高温热障涂层及制备技术研究进展 [J]. 航空学报, 2014, 35: 2722
doi: 10.7527/S1000-6893.2014.0161
2 Peters M, Leyens C, Schulz U, et al. EB-PVD thermal barrier coatings for aeroengines and gas turbines [J]. Adv. Eng. Mater., 2001, 3: 193
doi: 10.1002/(ISSN)1527-2648
3 Schulz U, Leyens C, Fritscher K, et al. Some recent trends in research and technology of advanced thermal barrier coatings [J]. Aerosp. Sci. Technol., 2003, 7: 73
doi: 10.1016/S1270-9638(02)00003-2
4 An L, Gao C Q, Jia J G, et al. Review on metal silicide anti-oxidation coatings [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 298
安 亮, 高昌琦, 贾建刚 等. 金属硅化物抗氧化涂层的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 298
5 Song Y. Volcanic ash avoidance [J]. Ciuil Aviat. Econom. Technol., 1997, (8): 49
宋 勇. 如何避开火山灰 [J]. 民航经济与技术, 1997, (8): 49
6 Smialek J L, Archer F A, Garlick R G. The chemistry of Saudi Arabian sand-a deposition problem on helicopter turbine airfoils [A]. Proceedings of the International SAMPE Technical Conference, 24th and International SAMPE Metals and Metals Processing Conference [C]. Toronto, 1992
7 Qu W W, Chen Z H, Li S S, et al. Failure mechanism of YSZ coatings prepared by EB-PVD under partial penetration of CMAS attacking [J]. Corros. Sci., 2022, 203: 110339
doi: 10.1016/j.corsci.2022.110339
8 Song W J, Yang S J, Fukumoto M, et al. Impact interaction of in-flight high-energy molten volcanic ash droplets with jet engines [J]. Acta Mater., 2019, 171: 119
doi: 10.1016/j.actamat.2019.04.011
9 Zhao C H, Yang L W, Xiao X R, et al. Improving molten CMAS resistance of thermal barrier coatings by modified laser remelting method [J]. J. Aeronaut. Mater., 2022, 42(1): 40
赵长浩, 杨玲伟, 肖学仁 等. 激光重熔改性热障涂层抗CMAS腐蚀特性 [J]. 航空材料学报, 2022, 42(1): 40
10 Guo L, Guo H B, Peng H, et al. Thermophysical properties of Yb2O3 doped Gd2Zr2O7 and thermal cycling durability of (Gd0.9-Yb0.1)2Zr2O7/YSZ thermal barrier coatings [J]. J. Eur. Ceram. Soc., 2014, 34: 1255
doi: 10.1016/j.jeurceramsoc.2013.11.035
11 Li L, Hitchman N, Knapp J. Failure of thermal barrier coatings subjected to CMAS attack [J]. J. Therm. Spray Technol., 2010, 19: 148
doi: 10.1007/s11666-009-9356-8
12 Stott F H, de Wet D J, Taylor R. Degradation of thermal-barrier coatings at very high temperatures [J]. MRS Bull., 1994, 19: 46
13 Chen X. Calcium-magnesium-alumina-silicate (CMAS) delamination mechanisms in EB-PVD thermal barrier coatings [J]. Surf. Coat. Technol., 2006, 200: 3418
doi: 10.1016/j.surfcoat.2004.12.029
14 Yang S J, Yan X D, Guo H B. Failure mechanism and protection strategy of thermal barrier coatings under CMAS attack [J]. Acta Aeronaut. Astronaut. Sin., 2022, 43: 527613
杨姗洁, 严旭东, 郭洪波. CMAS环境下热障涂层的损伤机理及防护策略 [J]. 航空学报, 2022, 43: 527613
15 Chen Z, Zhang Z Q, Wei W T, et al. Failure analysis of thermal barrier coatings on turbine blade in CMAS environment [J]. Aeroengine, 2022, 48(2): 121
陈 泽, 张志强, 韦文涛 等. 涡轮叶片热障涂层在CMAS环境下的失效分析 [J]. 航空发动机, 2022, 48(2): 121
16 Guo L, Gao Y, Ye F X, et al. CMAS corrosion behavior and protection method of thermal barrier coatings for aeroengine [J]. Acta Metall. Sin., 2021, 57: 1184
doi: 10.11900/0412.1961.2021.00121
郭 磊, 高 远, 叶福兴 等. 航空发动机热障涂层的CMAS腐蚀行为与防护方法 [J]. 金属学报, 2021, 57: 1184
17 Zhang B P, Song W J, Wei L L, et al. Novel thermal barrier coatings repel and resist molten silicate deposits [J]. Scr. Mater., 2019, 163: 71
doi: 10.1016/j.scriptamat.2018.12.028
18 Guo L, Yan Z, Wang X H, et al. Ti2AlC MAX phase for resistance against CMAS attack to thermal barrier coatings [J]. Ceram. Int., 2019, 45: 7627
doi: 10.1016/j.ceramint.2019.01.059
19 Zhang B P, Song W J, Guo H B. Wetting, infiltration and interaction behavior of CMAS towards columnar YSZ coatings deposited by plasma spray physical vapor [J]. J. Eur. Ceram. Soc., 2018, 38: 3564
doi: 10.1016/j.jeurceramsoc.2018.04.013
20 Jiang B C, Cao J D, Cao X Y, et al. Hot corrosion behavior of Gd2-(Zr1- x Ce x )2O7 thermal barrier coating ceramics exposed to artificial particulates of CMAS [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 263
姜伯晨, 曹将栋, 曹雪玉 等. Gd2(Zr1- x Ce x )2O7热障涂层陶瓷层材料的CMAS热腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 263
doi: 10.11902/1005.4537.2020.023
21 Hu Y Y, Qian W, Hua Y Q, et al. Effect of pre-corrosion of Gd2Zr2O7 at 900-1300 ℃ on its hot corrosion behavior at 1250 ℃ beneath deposites of CaO-MgO-Al2O3-SiO2 [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 687
胡蕴媛, 钱 伟, 花银群 等. 预腐蚀工艺对Gd2Zr2O7陶瓷抗CMAS腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 687
doi: 10.11902/1005.4537.2021.208
22 Krämer S, Yang J, Levi C G, et al. Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2 (CMAS) deposits [J]. J. Am. Ceram. Soc., 2006, 89: 3167
doi: 10.1111/jace.2006.89.issue-10
23 Qu W W, Li S S, Jing J, et al. The spreading behavior of CMAS melt on YSZ single crystal with low index orientation [J]. Appl. Surf. Sci., 2020, 527: 146846
doi: 10.1016/j.apsusc.2020.146846
24 Xie J, Zhang Q, Mao S, et al. Anisotropic crystal plane nature and wettability of fluorapatite [J]. Appl. Surf. Sci., 2019, 493: 294
doi: 10.1016/j.apsusc.2019.06.195
25 Stapper G, Bernasconi M, Nicoloso N, et al. Ab initio study of structural and electronic properties of yttria-stabilized cubic zirconia [J]. Phys. Rev. B, 1999, 59: 294
doi: 10.1103/PhysRevB.59.294
[1] . Corrosion simulation analysis of typical aeroengine connection structure[J]. 中国腐蚀与防护学报, 0, (): 0-0.
[2] FAN Yufang, ZHANG Yafei, YIN Liusen, ZHAO Conghui, HE Yanbin, ZHANG Chuanxiang. Research Progress on Carbon Dots in Field of Metal Corrosion and Protection[J]. 中国腐蚀与防护学报, 2023, 43(6): 1237-1246.
[3] LIAO Minxing, LIU Jun, DONG Baojun, LENG Xuesong, CAI Zelun, WU Junwei, HE Jianchao. Effect of Salt Spray Environment on Performance of 1Cr18Ni9Ti Brazed Joint[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[4] SHANG Ting, JIANG Guangrui, LIU Guanghui, QIN Hancheng. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of Zn-6%Al-3%Mg Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1413-1418.
[5] LIU Hao, GUO Xiaokai, WANG Wei, WU Liankui, CAO Fahe, SUN Qingqing. Effect of Ultrasonic Shot Peening on Microstructure and Properties of a 7075 Al-alloy Rod[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[6] XING Shaohua, LIU Zhongye, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei. Galvanic Corrosion Behavior of ZCuSn5Pb5Zn5/B10 Couple in Flowing Seawater[J]. 中国腐蚀与防护学报, 2023, 43(6): 1339-1348.
[7] WANG Quanrun, HOU Jin, HOU Baorong, TIAN Huiwen. Research Progress of Analytical Methods for Vapor Phase Inhibitors[J]. 中国腐蚀与防护学报, 2023, 43(6): 1189-1202.
[8] WANG Xiao, LI Ming, LIU Feng, WANG Zhongping, LI Xiangbo, LI Ningwang. Effect of Temperature on Erosion-corrosion Behavior of B10 Cu-Ni Alloy Pipe[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[9] WANG Hua, WANG Yingjie, LIU Enze. Hot Corrosion Behavior of New Type Co-Al-W Superalloys with Different Ni Contents[J]. 中国腐蚀与防护学报, 2023, 43(6): 1419-1426.
[10] ZHU Yesen, CAI Kun, HU Baowen, XIA Yunqiu, HU Taoyong, HUANG Yi. Research Progress on Characteristics and Prediction Models of Carbon Dioxide Induced Corrosion for Submarine Pipelines[J]. 中国腐蚀与防护学报, 2023, 43(6): 1225-1236.
[11] ZHANG Kaili, DU Lili, TAN Jun, LIU Xiangzhou, MA Ji, QIU Ping. Preparation and Properties of Slippery Anti-corrosion Coating Based on SiO2 with Coral Cluster Morphology[J]. 中国腐蚀与防护学报, 2023, 43(6): 1319-1328.
[12] . Effect of hot rolled oxide scale on evolution of fast-stabilized rust layer and corrosion resistance of weathering steel[J]. 中国腐蚀与防护学报, 0, (): 0-0.
[13] . Effect of Electrical Parameters on Energy Consumption and Corrosion Resistance of Micro-arc Oxidation Coating on AZ31B Magnesium Alloy[J]. 中国腐蚀与防护学报, 0, (): 0-0.
[14] . Fabrication and photocathodic protection performance for 304 stainless steel of Bi2S3/ TiO2 nanocomposites[J]. 中国腐蚀与防护学报, 0, (): 0-0.
[15] XIAO Wentao, LIU Jing, PENG Jingjing, ZHANG Xian, WU Kaiming. Corrosion Resistance of Two Arc Spraying Coatings on EH36 Steel in Neutral Salt Spray Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
No Suggested Reading articles found!