|
|
Spreading and Corrosion Behavior of CMAS Melt on Different Materials for Thermal Barrier Coating |
QU Weiwei1,2, CHEN Zehao3, PEI Yanling4, LI Shusuo2( ), WANG Fuhui3 |
1.AECC Shenyang Engine Research Institute, Shenyang 110015, China 2.Research Institute of Aero-Engine, Beihang University, Beijing 100191, China 3.Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China 4.Research Institute for Frontier Science, Beihang University, Beijing 100191, China |
|
Cite this article:
QU Weiwei, CHEN Zehao, PEI Yanling, LI Shusuo, WANG Fuhui. Spreading and Corrosion Behavior of CMAS Melt on Different Materials for Thermal Barrier Coating. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1407-1412.
|
Abstract The coating failure of blades caused by low melting point silicate composed of CaO,MgO,Al2O3,SiO2 has been widely concerned for an aero-engine in service. Therefore, the spreading and corrosivity of CMAS melt on five ceramic materials, i.e. Y2O3,La2Ce2O7,Gd2Zr2O7,Al2O3 and 12YSHf, as candidate materials for thermal barrier coatings, was assessed in air at 1250 oC for 16 h, in comparison with 7YSZ, the commonly used ceramic material. It can be found that 12YSHf and Al2O3 show good effect in slowing down the spreading of CMAS melt. In addition, the high temperature reaction interfaces of CMAS/Al2O3 and CMAS/La2Ce2O7 are all thinner than the others, which means that Al2O3 and La2Ce2O7 have better resistance to CMAS. Overall, the effect of Al2O3 in retarding the spreading and corrosion of CMAS is the most outstanding.
|
Received: 22 November 2022
32134.14.1005.4537.2022.362
|
|
Fund: Natural Science Foundation of Liaoning Province(2022-MS-104);China Postdoctoral Science Foundation(ZX20230009) |
Corresponding Authors:
LI Shusuo, E-mail: lishs@buaa.edu.cn
|
1 |
Guo H B, Gong S K, Xu H B. Research progress on new high/ultra-high temperature thermal barrier coatings and processing technologies [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2722
|
|
郭洪波, 宫声凯, 徐惠彬. 新型高温/超高温热障涂层及制备技术研究进展 [J]. 航空学报, 2014, 35: 2722
doi: 10.7527/S1000-6893.2014.0161
|
2 |
Peters M, Leyens C, Schulz U, et al. EB-PVD thermal barrier coatings for aeroengines and gas turbines [J]. Adv. Eng. Mater., 2001, 3: 193
doi: 10.1002/(ISSN)1527-2648
|
3 |
Schulz U, Leyens C, Fritscher K, et al. Some recent trends in research and technology of advanced thermal barrier coatings [J]. Aerosp. Sci. Technol., 2003, 7: 73
doi: 10.1016/S1270-9638(02)00003-2
|
4 |
An L, Gao C Q, Jia J G, et al. Review on metal silicide anti-oxidation coatings [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 298
|
|
安 亮, 高昌琦, 贾建刚 等. 金属硅化物抗氧化涂层的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 298
|
5 |
Song Y. Volcanic ash avoidance [J]. Ciuil Aviat. Econom. Technol., 1997, (8): 49
|
|
宋 勇. 如何避开火山灰 [J]. 民航经济与技术, 1997, (8): 49
|
6 |
Smialek J L, Archer F A, Garlick R G. The chemistry of Saudi Arabian sand-a deposition problem on helicopter turbine airfoils [A]. Proceedings of the International SAMPE Technical Conference, 24th and International SAMPE Metals and Metals Processing Conference [C]. Toronto, 1992
|
7 |
Qu W W, Chen Z H, Li S S, et al. Failure mechanism of YSZ coatings prepared by EB-PVD under partial penetration of CMAS attacking [J]. Corros. Sci., 2022, 203: 110339
doi: 10.1016/j.corsci.2022.110339
|
8 |
Song W J, Yang S J, Fukumoto M, et al. Impact interaction of in-flight high-energy molten volcanic ash droplets with jet engines [J]. Acta Mater., 2019, 171: 119
doi: 10.1016/j.actamat.2019.04.011
|
9 |
Zhao C H, Yang L W, Xiao X R, et al. Improving molten CMAS resistance of thermal barrier coatings by modified laser remelting method [J]. J. Aeronaut. Mater., 2022, 42(1): 40
|
|
赵长浩, 杨玲伟, 肖学仁 等. 激光重熔改性热障涂层抗CMAS腐蚀特性 [J]. 航空材料学报, 2022, 42(1): 40
|
10 |
Guo L, Guo H B, Peng H, et al. Thermophysical properties of Yb2O3 doped Gd2Zr2O7 and thermal cycling durability of (Gd0.9-Yb0.1)2Zr2O7/YSZ thermal barrier coatings [J]. J. Eur. Ceram. Soc., 2014, 34: 1255
doi: 10.1016/j.jeurceramsoc.2013.11.035
|
11 |
Li L, Hitchman N, Knapp J. Failure of thermal barrier coatings subjected to CMAS attack [J]. J. Therm. Spray Technol., 2010, 19: 148
doi: 10.1007/s11666-009-9356-8
|
12 |
Stott F H, de Wet D J, Taylor R. Degradation of thermal-barrier coatings at very high temperatures [J]. MRS Bull., 1994, 19: 46
|
13 |
Chen X. Calcium-magnesium-alumina-silicate (CMAS) delamination mechanisms in EB-PVD thermal barrier coatings [J]. Surf. Coat. Technol., 2006, 200: 3418
doi: 10.1016/j.surfcoat.2004.12.029
|
14 |
Yang S J, Yan X D, Guo H B. Failure mechanism and protection strategy of thermal barrier coatings under CMAS attack [J]. Acta Aeronaut. Astronaut. Sin., 2022, 43: 527613
|
|
杨姗洁, 严旭东, 郭洪波. CMAS环境下热障涂层的损伤机理及防护策略 [J]. 航空学报, 2022, 43: 527613
|
15 |
Chen Z, Zhang Z Q, Wei W T, et al. Failure analysis of thermal barrier coatings on turbine blade in CMAS environment [J]. Aeroengine, 2022, 48(2): 121
|
|
陈 泽, 张志强, 韦文涛 等. 涡轮叶片热障涂层在CMAS环境下的失效分析 [J]. 航空发动机, 2022, 48(2): 121
|
16 |
Guo L, Gao Y, Ye F X, et al. CMAS corrosion behavior and protection method of thermal barrier coatings for aeroengine [J]. Acta Metall. Sin., 2021, 57: 1184
doi: 10.11900/0412.1961.2021.00121
|
|
郭 磊, 高 远, 叶福兴 等. 航空发动机热障涂层的CMAS腐蚀行为与防护方法 [J]. 金属学报, 2021, 57: 1184
|
17 |
Zhang B P, Song W J, Wei L L, et al. Novel thermal barrier coatings repel and resist molten silicate deposits [J]. Scr. Mater., 2019, 163: 71
doi: 10.1016/j.scriptamat.2018.12.028
|
18 |
Guo L, Yan Z, Wang X H, et al. Ti2AlC MAX phase for resistance against CMAS attack to thermal barrier coatings [J]. Ceram. Int., 2019, 45: 7627
doi: 10.1016/j.ceramint.2019.01.059
|
19 |
Zhang B P, Song W J, Guo H B. Wetting, infiltration and interaction behavior of CMAS towards columnar YSZ coatings deposited by plasma spray physical vapor [J]. J. Eur. Ceram. Soc., 2018, 38: 3564
doi: 10.1016/j.jeurceramsoc.2018.04.013
|
20 |
Jiang B C, Cao J D, Cao X Y, et al. Hot corrosion behavior of Gd2-(Zr1- x Ce x )2O7 thermal barrier coating ceramics exposed to artificial particulates of CMAS [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 263
|
|
姜伯晨, 曹将栋, 曹雪玉 等. Gd2(Zr1- x Ce x )2O7热障涂层陶瓷层材料的CMAS热腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 263
doi: 10.11902/1005.4537.2020.023
|
21 |
Hu Y Y, Qian W, Hua Y Q, et al. Effect of pre-corrosion of Gd2Zr2O7 at 900-1300 ℃ on its hot corrosion behavior at 1250 ℃ beneath deposites of CaO-MgO-Al2O3-SiO2 [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 687
|
|
胡蕴媛, 钱 伟, 花银群 等. 预腐蚀工艺对Gd2Zr2O7陶瓷抗CMAS腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 687
doi: 10.11902/1005.4537.2021.208
|
22 |
Krämer S, Yang J, Levi C G, et al. Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2 (CMAS) deposits [J]. J. Am. Ceram. Soc., 2006, 89: 3167
doi: 10.1111/jace.2006.89.issue-10
|
23 |
Qu W W, Li S S, Jing J, et al. The spreading behavior of CMAS melt on YSZ single crystal with low index orientation [J]. Appl. Surf. Sci., 2020, 527: 146846
doi: 10.1016/j.apsusc.2020.146846
|
24 |
Xie J, Zhang Q, Mao S, et al. Anisotropic crystal plane nature and wettability of fluorapatite [J]. Appl. Surf. Sci., 2019, 493: 294
doi: 10.1016/j.apsusc.2019.06.195
|
25 |
Stapper G, Bernasconi M, Nicoloso N, et al. Ab initio study of structural and electronic properties of yttria-stabilized cubic zirconia [J]. Phys. Rev. B, 1999, 59: 294
doi: 10.1103/PhysRevB.59.294
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|