Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (6): 1293-1302    DOI: 10.11902/1005.4537.2022.415
Current Issue | Archive | Adv Search |
Effect of Ultrasonic Shot Peening on Microstructure and Properties of a 7075 Al-alloy Rod
LIU Hao1, GUO Xiaokai1, WANG Wei2, WU Liankui1, CAO Fahe1, SUN Qingqing1()
1.School of Materials, Sun Yat-sen University, Shenzhen 518107, China
2.Songshan Lake Materials Laboratory, Dongguan 523808, China
Cite this article: 

LIU Hao, GUO Xiaokai, WANG Wei, WU Liankui, CAO Fahe, SUN Qingqing. Effect of Ultrasonic Shot Peening on Microstructure and Properties of a 7075 Al-alloy Rod. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1293-1302.

Download:  HTML  PDF(9850KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of ultrasonic shot peening (USSP) on microstructure, microhardness, electrochemical corrosion and intergranular corrosion behavior of a 7075 Al-alloy rod were investigated by means of optical microscopy (OM), X-ray diffraction (XRD), transmission electron microscope (TEM) and corrosion tests.Results showed that after USSP treatment, gradient nanostructures were obtained in the topmost layer with grain size of ~78.2 nm; the precipitated strengthening phases (η and η′ phase) of surface region redissolved into Al matrix, and the hardness of surface layer increased by about 20%. Results of polarization test in 0.1 mol/L Na2SO4+20 mmol/L NaCl solution showed that pitting potential of the alloy shifted to the positive directipn position after USSP, implying a better resistance against pitting corrosion initiation. Electrochemical corrosion tests in 3.5%NaCl solution indicated that a higher corrosion rate of 7075 Al-alloy was obtained after USSP treatment. In addition, the corrosion rate showed a decreasing trend as a function of peened sample depth. Intergranular corrosion immersion tests showed that the resistance to intergranular corrosion of AA7075 decreased after USSP treatment. Combined with the microstructure characterization results, the surface strengthening mechanism and corrosion mechanism of ultrasonic shot peened 7075 Al-alloy were discussed.

Key words:  7075 Al-alloy rod      surface nanocrystallization      microhardness      corrosion behaviors     
Received:  30 December 2022      32134.14.1005.4537.2022.415
ZTFLH:  TG174  
Fund: Open Research Fund of Songshan Lake Materials Laboratory(2021SLABFN13);National Natural Science Foundation of China(52101115)
Corresponding Authors:  SUN Qingqing, E-mail: sunqq7@mail.sysu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.415     OR     https://www.jcscp.org/EN/Y2023/V43/I6/1293

Fig.1  Schematic diagram of ultrasonic shot peening equipment
Fig.2  Cross-sectional metallographic graphs of USSPed 7075 Al-alloy with 40 mm (a, d), 25 mm (b, e) and 15 mm (c, f) impact distances
Fig.3  Average grain size of 7075 Al-alloy rod
Fig.4  XRD patterns of 7075 Al-alloy before and after USSP treatment (0, 50, 100, 200, 300 and 400 μm are the subsequent polishing depths of USSPed samples)
Fig.5  TEM images of the USSPed 7075 Al-alloy at ~5 μm to surface: (a) bright field TEM, (b) corresponding selected area electron diffraction, (c) statistical results of grain size
Fig.6  Hardness-depth profile of 7075 Al-alloy rod after USSP treatment
Fig.7  Open circuit potential-time curves (a) and polarization curves (b) of the untreated and peened 7075 Al-alloy with different impact distances in 0.1 mol/L Na2SO4+20 mmol/L NaCl
SampleEcorr / VAg/AgClIcorr / 10-7 A·cm-2Epit / VAg/AgCl
Untreated-0.511.64-0.44
USSP_15 mm-0.636.55-0.42
USSP_40 mm-0.496.92-0.35
Table 1  Electrochemical parameters of the untreated and peen-ed 7075 Al-alloy with different impact distances
Fig.8  Open circuit potential-time curves (a) and polarization curves (b) of the untreated and peened 7075 Al-alloy (with surface being polished off 0, 50, 100 μm) in 3.5%NaCl solution
SampleEcorr / VIcorr / 10-6 A·cm-2
USSP_0 μm-0.753.83
USSP_50 μm-0.712.36
USSP_100 μm-0.701.72
Untreated-0.680.97
Table 2  Electrochemical parameters of the untreated and peen-ed 7075 Al-alloy (with surface being polished off 0, 50, 100 μm) in 3.5%NaCl solution
Fig.9  Nyquist plot (a) and Bode plots (b, c) and equivalent circuit model (d) of the untreated and peened 7075 Al-alloy (without and with surface being polished off 0, 50, 100 μm)
Sample

Rs

Ω·cm2

Y1

Ω-1·cm-2·S n

α1

Rpit

Ω·cm2

Rct

Ω·cm2

Ypit

Ω-1·cm-2·S n

αpit
USSP_0 μm2.213.43×10-80.9822.373.05×1031.97×10-40.75
USSP_50 μm17.361.29×10-60.9918.315.04×1031.84×10-50.89
USSP_100 μm18.341.94×10-60.9725.938.75×1031.23×10-50.93
Untreated27.011.11×10-70.9525.851.08×1041.27×10-50.92
Table 3  Fitting parameters of EIS shown in Fig.9
Fig.10  Cross-sectional optical micrographs of 7075 Al- alloys after IGC test: (a) 6 h and (b) 2 h immersion of the untreated sample, (c) 6 h and (d) 2 h immersion of the peened sample
1 Yuan J, Pan S H, Zheng T Q, et al. Nanoparticle promoted solution treatment by reducing segregation in AA7034 [J]. Mater. Sci. Eng., 2021, 822A: 141691
2 Sun Q Q, Han Q Y, Wang S, et al. Microstructure, corrosion behaviour and thermal stability of AA 7150 after ultrasonic shot peening [J]. Surf. Coat. Technol., 2020, 398: 126127
doi: 10.1016/j.surfcoat.2020.126127
3 Yang W C, Ji S X, Zhang Q, et al. Investigation of mechanical and corrosion properties of an Al-Zn-Mg-Cu alloy under various ageing conditions and interface analysis of η′ precipitate [J]. Mater. Des., 2015, 85: 752
doi: 10.1016/j.matdes.2015.06.183
4 Knight S P, Birbilis N, Muddle B C, et al. Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al-Zn-Mg-Cu alloys [J]. Corros. Sci., 2010, 52: 4073
doi: 10.1016/j.corsci.2010.08.024
5 Chen S Y, Chen K H, Peng G S, et al. Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy [J]. Mater. Des., 2012, 35: 93
doi: 10.1016/j.matdes.2011.09.033
6 Amini S, Masic A, Bertinetti L, et al. Textured fluorapatite bonded to calcium sulphate strengthen stomatopod raptorial appendages [J]. Nat. Commun., 2014, 5: 3187
doi: 10.1038/ncomms4187 pmid: 24476684
7 Weaver J C, Milliron G W, Miserez A, et al. The stomatopod dactyl club: a formidable damage-tolerant biological hammer [J]. Science, 2012, 336: 1275
doi: 10.1126/science.1218764 pmid: 22679090
8 Liu Z Q, Meyers M A, Zhang Z F, et al. Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications [J]. Prog. Mater Sci., 2017, 88: 467
doi: 10.1016/j.pmatsci.2017.04.013
9 Dobrzański L A, Lukaszkowicz K, Pakuła D, et al. Corrosion resistance of multilayer and gradient coatings deposited by PVD and CVD techniques [J]. Arch. Mater. Sci. Eng., 2007, 28: 12
10 Sun D C, Ke L M, Xing L, et al. Self-propagating high-temperature synthesis of gradient transitional layer between ceramics and metal [J]. Trans. China Weld. Inst., 2000, 21(3): 44
孙德超, 柯黎明, 邢 丽 等. 陶瓷与多种梯度过渡层的自蔓延高温合成 [J]. 焊接学报, 2000, 21(3): 44
11 Pender D C, Padture N P, Giannakopoulos A E, et al. Gradients in elastic modulus for improved contact-damage resistance. Part I: The silicon nitride-oxynitride glass system [J]. Acta Mater., 2001, 49: 3255
doi: 10.1016/S1359-6454(01)00200-2
12 Colli A, Fasoli A, Ronning C, et al. Ion beam doping of silicon nanowires [J]. Nano Lett., 2008, 8: 2188
doi: 10.1021/nl080610d pmid: 18576693
13 Tong W P, Tao N R, Wang Z B, et al. Nitriding iron at lower temperatures [J]. Science, 2003, 299: 686
pmid: 12560546
14 Studart A R. Additive manufacturing of biologically-inspired materials [J]. Chem. Soc. Rev., 2016, 45: 359
doi: 10.1039/c5cs00836k pmid: 26750617
15 Ye Z Y, Liu D X, Li C Y, et al. Effect of shot peening and plasma electrolytic oxidation on the intergranular corrosion behavior of 7A85 aluminum alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 705
doi: 10.1007/s40195-014-0104-9
16 Bagheri S, Guagliano M. Review of shot peening processes to obtain nanocrystalline surfaces in metal alloys [J]. Surf. Eng., 2009, 25: 3
doi: 10.1179/026708408X334087
17 Rakita M, Wang M, Han Q Y, et al. Ultrasonic shot peening [J]. Int. J. Comput. Mater. Sci. Surf. Eng., 2013, 5: 189
18 Huo W T, Hu J J, Cao H H, et al. Simultaneously enhanced mechanical strength and inter-granular corrosion resistance in high strength 7075 Al alloy [J]. J. Alloy. Compd., 2019, 781: 680
doi: 10.1016/j.jallcom.2018.12.024
19 Greiner C, Liu Z L, Schneider R, et al. The origin of surface microstructure evolution in sliding friction [J]. Scr. Mater., 2018, 153: 63
doi: 10.1016/j.scriptamat.2018.04.048
20 Lu K. Gradient nanostructured materials [J]. Acta Metall. Sin., 2015, 51: 1
doi: 10.11900/0412.1961.2014.00395
卢 柯. 梯度纳米结构材料 [J]. 金属学报, 2015, 51: 1
21 Pandey V, Singh J K, Chattopadhyay K, et al. Influence of ultrasonic shot peening on corrosion behavior of 7075 aluminum alloy [J]. J. Alloy. Compd., 2017, 723: 826
doi: 10.1016/j.jallcom.2017.06.310
22 Sun Q Q, Han Q Y, Xu R, et al. Localized corrosion behaviour of AA7150 after ultrasonic shot peening: Corrosion depth vs. impact energy [J]. Corros. Sci., 2018, 130: 218
doi: 10.1016/j.corsci.2017.11.008
23 Bao L, Li K, Zheng J Y, et al. Surface characteristics and stress corrosion behavior of AA 7075-T6 aluminum alloys after different shot peening processes [J]. Surf. Coat. Technol., 2022, 440: 128481
doi: 10.1016/j.surfcoat.2022.128481
24 Sun Q Q, Zhou W H, Xie Y H, et al. Effect of trace chloride and temperature on electrochemical corrosion behavior of 7150-T76 Al alloy [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 121
孙擎擎, 周文辉, 谢跃煌 等. 微量Cl-和温度对7150-T76铝合金电化学腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2016, 36: 121
doi: 10.11902/1005.4537.2015.051
25 Sun Q Q, Chen Q Y, Chen K H. Link between pitting potentials and stress cracking corrosion susceptibility of 7150 Al Alloy with Different Ageing Processes [J]. Chin. J. Nonferrous Met., 2016, 26: 1400
孙擎擎, 陈启元, 陈康华. 不同热处理7150铝合金的点蚀电位与应力腐蚀敏感性 [J]. 中国有色金属学报, 2016, 26: 1400
26 Sun Q Q, Xu R, Han Q Y, et al. Long distance chemical gradient induced by surface nanocrystallization [J]. Appl. Mater. Today, 2019, 14: 137
doi: 10.1016/j.apmt.2018.12.002
27 Sun Q Q, Han Q Y, Liu X T, et al. The effect of surface contamination on corrosion performance of ultrasonic shot peened 7150 Al alloy [J]. Surf. Coat. Technol., 2017, 328: 469
doi: 10.1016/j.surfcoat.2017.08.028
28 Lin B, Zhang J Y, Sun Q Q, et al. Microstructure, corrosion behavior and hydrogen evolution of USSP processed AZ31 magnesium alloy with a surface layer containing amorphous Fe-rich composite [J]. Int. J. Hydrogen Energy, 2021, 46: 10172
doi: 10.1016/j.ijhydene.2020.12.132
29 Perez M. Gibbs-Thomson effects in phase transformations [J]. Scr. Mater., 2005, 52: 709
doi: 10.1016/j.scriptamat.2004.12.026
30 Sun Q Q, Cao F H, Wang S. Nanoscale corrosion investigation of surface nanocrystallized 7150 Al alloy in 3.5 wt% NaCl solution by using FIB-TEM techniques [J]. Corros. Sci., 2022, 195: 110021
doi: 10.1016/j.corsci.2021.110021
31 Beura V K, Karanth Y, Darling K, et al. Role of gradient nano-grained surface layer on corrosion behavior of aluminum 7075 alloy [J]. npj Mater. Degrad., 2022, 6: 62
doi: 10.1038/s41529-022-00271-z
32 Chao D Y, Sun Y Z, Liu X T, et. al . Effect of Zn/Mg ratio and aging temperature on precipitation behavior of Al-Zn-Mg-Cu aluminum alloy [J]. Mater. Rep., 2019, 33(suppl.2) : 398
晁代义, 孙有政, 刘晓滕 等. Zn/Mg比及时效温度对Al-Zn-Mg-Cu系合金析出行为的影响 [J]. 材料导报, 2019, 33(): 398
[1] Zhiying ZHANG, Jianan TANG, Jie YU, Xudong WANG, Luochao HUANG, Junwen ZHOU, Hao TANG, Jikang ZHANG, Yatao CHEN, Dongpeng CHENG. Corrosion Behavior of Cu-based Metallic Glass Composites in NaCl Solution[J]. 中国腐蚀与防护学报, 2018, 38(5): 478-486.
[2] XU Yunhua CAO Kening YANG Yuguo ZHAO Yu GONG Xiaojing. MICROHARDNESS OF Ni-Co ALLOY PLATED BY HIGH FREQUENCY PULSE CURRENTS[J]. 中国腐蚀与防护学报, 2009, 29(2): 141-144.
[3] . Study on Structure and Corrosiion Behavior of Mo Diffusion Layers on Ti-6Al-4V Alloy with Plasma Surface Alloying Technique[J]. 中国腐蚀与防护学报, 2007, 27(1): 31-34 .
[4] . GRAIN-SIZE EFFECT ON THE ELECTROCHEMICAL CORROSION OF SURFACE NANOCRYSTALLIZED LOW CARBON STEEL[J]. 中国腐蚀与防护学报, 2001, 21(4): 215-219 .
No Suggested Reading articles found!