Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (6): 1329-1338    DOI: 10.11902/1005.4537.2022.387
Current Issue | Archive | Adv Search |
Effect of Temperature on Erosion-corrosion Behavior of B10 Cu-Ni Alloy Pipe
WANG Xiao1, LI Ming1, LIU Feng2(), WANG Zhongping1, LI Xiangbo2, LI Ningwang1
1.CRRC Qingdao Sifang Co., Ltd., Qingdao 266111, China
2.State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
Cite this article: 

WANG Xiao, LI Ming, LIU Feng, WANG Zhongping, LI Xiangbo, LI Ningwang. Effect of Temperature on Erosion-corrosion Behavior of B10 Cu-Ni Alloy Pipe. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1329-1338.

Download:  HTML  PDF(15090KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of B10 Cu-Ni alloy pipe in natural seawater at different temperatures was investigated via pipe flow test device capable of in-situ measurement designed independently by means of electrochemical impedance spectroscope (EIS) and other electrochemical methods, and the corrosion morphology and corrosion products composition were analyzed by scanning electron microscope (SEM) and X-ray photoelectron spectroscope (XPS). The results indicated that the corrosion product film on the surface of B10 pipe became denser with the decrease of temperature in the range of 10-50 ℃, leading to the increase of corrosion resistance of the film and the decrease of corrosion rate of the alloy. The corrosion behavior of B10 pipe in seawater would change with time and temperature. At 10, 25 and 35 ℃, the corrosion rate of B10 pipe gradually decreased with the extension of time, and the corrosion products were mainly Cu2O, NiO and FeOOH, resulting in a better protective effect to the matrix. At 50 ℃, the corrosion products on the surface of B10 pipe were CuO, Ni and FeO, which presented poor protective effect to the substrate.

Key words:  90/10 copper-nickel pipe      erosion-corrosion      temperature      real-time electrochemical testing      corrosion product film     
Received:  07 December 2022      32134.14.1005.4537.2022.387
ZTFLH:  TG174  
Corresponding Authors:  LIU Feng, E-mail: liufeng279@126.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.387     OR     https://www.jcscp.org/EN/Y2023/V43/I6/1329

Fig.1  Schematic diagram of the loop test device
Fig.2  Surface morphologies of B10 pipe after erosion-corrosion at 10 oC (a-c), 25 oC (d-f), 35 oC (g-i) and 50 oC (j-l) for 1 d (a, d, g, j), 7 d (b, e, h, k) and 30 d (c, f, i, l)
Fig.3  Atomic fraction of O, Cu, Ni and Fe in the corrosion product films formed on B10 pipe after erosion-corrosion at 10 ℃ (a) and 50 ℃ (b) for 1 and 30 d
Fig.4  XPS fine peaks of Cu2p (a, d), Ni2p (b, e) and Fe2p (c, f) on the surfaces of B10 pipe after erosion-corrosion at 10 ℃ for 1 d (a-c) and 30 d (d-f)
Time / dCu2OCuOCu(OH)2NiNiONi(OH)2Fe3O4FeOOHFeO
163.632.14.356.543.5-32.432.834.8
3090.99.1--74.725.3-64.135.9
Table 1  Fitting results of XPS fine peaks of B10 pipe after erosion-corrosion in seawater at 10 ℃ for 1 d and 30 d
Fig.5  XPS fine peaks of Cu2p (a, d), Ni2p (b, e) and Fe2p (c, f) on the surfaces of B10 pipe after erosion-corrosion at 50 ℃ for 1 d (a-c) and 30 d (d-f)
Time / dCuOCuCu(OH)2Cu2ONiNi(OH)2Fe3O4FeOOHFeO
166.129.54.4-74.825.244.631.324.1
3066.4-3.230.468.731.3-39.560.5
Table 2  Fitting results of XPS fine peaks of B10 pipe after erosion-corrosion in seawater at 50 ℃ for 1 and 30 d
Fig.6  Nyquist (a-d) and Bode (e-h) plots of B10 pipe after erosion-corrosion for different time at 10 ℃ (a, e), 25 ℃ (b, f), 35 ℃ (c, g) and 50 ℃ (d, h)
Fig.7  Equivalent circuit model for fitting EIS data of B10 pipe
Temperature / ℃Time / dRs / Ω·cm2CPE1 / μF·cm-2·S-nn1Rf / Ω·cm²CPE2 / μF·cm-2·S-nn2Rct / Ω·cm²
10028.044.090.85042,367342.10.696325.00
126.163.920.87423,110255.80.732427.31
329.722.460.75274,174462.40.657733.2
734.253.490.76544,779216.10.746738.32
1529.72.580.75293,722321.30.702540.48
3030.172.080.76224,882273.40.799142.61
25014.024.810.6875990283.90.794316.18
114.077.190.89831,554275.90.766619.49
318.019.380.75661,842215.70.809223.92
712.385.210.81131,943232.10.798624.34
1517.092.870.35742,040165.80.851926.72
309.842.040.79512,41058.390.937828.85
35014.907.090.7463390.4413.60.819710.10
112.877.750.7649870.4453.40.887515.17
312.389.490.70491,339301.90.880420.38
729.325.150.76541,492116.20.689221.89
157.657.840.7361637.2553.30.780714.68
3014.896.470.9495666.9577.40.703815.03
50018.998.820.9323323.4330.70.80099.27
124.666.530.9988343.6279.00.825213.72
316.065.220.7846367.3317.80.845217.03
718.696.750.7341381.8281.80.898918.45
1521.467.780.7246389.2271.30.825718.58
3026.226.640.8943348.2256.90.736113.23
Table 3  Fitting data of EIS of B10 pipe after erosion-corrosion at different temperatures for different time
Fig.8  Variations of Rct (a) and Rf (b) of B10 pipe with time
Fig.9  OCP of B10 pipe after erosion-corrosion at different temperatures for different time
Fig.10  Schematic illustrations of corrosion processes of B10 pipe in the early days (a, d), mid-term (b, e) and late (c, f) of erosion-corrosion in seawater at 10 ℃ (a-c) and 50 ℃ (d-f)
1 Lu J, Wu J Y. Review on research and application of Cu-Ni alloys [J]. Nonferrous Met. Mater. Eng., 2020, 41(3): 55
陆 菁, 武家艳. 铜镍合金的研究及其应用综述 [J]. 有色金属材料与工程, 2020, 41(3): 55
2 Tao H, Yu Y, Zhao G C, et al. Standard status and proposal of B30 copper alloy heat transfer tube for condensers of naval ships [J]. Dev. Appl. Mater., 2021, 36(1): 96
陶 欢, 郁 炎, 赵国超 等. 舰船冷凝器用B30铜合金传热管标准体系 [J]. 材料开发与应用, 2021, 36(1): 96
3 Wei M M, Yang B J, Liu Y Y, et al. Research progress and prospect on erosion-corrosion of Cu-Ni alloy pipe in seawater [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 513
魏木孟, 杨博均, 刘洋洋 等. Cu-Ni合金管海水冲刷腐蚀研究现状及展望 [J]. 中国腐蚀与防护学报, 2016, 36: 513
doi: 10.11902/1005.4537.2016.123
4 Shen H, Gao F, Zhang G G, et al. Material selection and anti-corrosion measures of seawater piping in warship [J]. Ship Eng., 2002, 24(4): 43
沈 宏, 高 峰, 张关根 等. 舰船海水管系选材及防腐对策 [J]. 船舶工程, 2002, 24(4): 43
5 Fan X W, Zhao G F, Zhang S F, et al. Study on corrosion and scaling properties of B30 Cu-Ni alloy in seawater under dynamic conditions [J]. Shandong Chem. Ind., 2018, 47(21): 45
范旭文, 赵桂锋, 张少峰 等. B30铜镍合金动态条件下在海水中腐蚀与结垢性能研究 [J]. 山东化工, 2018, 47(21): 45
6 Chi C Y. Research on electrochemical corrosion behavior of 70/30 Cu-Ni alloy in seawater [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009
迟长云. B30铜镍合金在海水中的腐蚀电化学性能研究 [D]. 南京: 南京航空航天大学, 2009
7 Chen H L, Ma L, Huang G S, et al. Effect of dissolved oxygen and flow rate of seawater on film formation of B30 Cu-Ni alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 724
陈翰林, 马 力, 黄国胜 等. 溶解氧和流速对B30铜镍合金在海水中成膜的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 724
doi: 10.11902/1005.4537.2021.260
8 Sun T T, Li N, Xue J J, et al. Effect of environment factors on corrosion behavior of 90-10 Cu-Ni alloy in seawater [J]. Equip. Environ. Eng., 2010, 7(4): 25
孙婷婷, 李 宁, 薛建军 等. 环境因素对B10铜镍合金耐蚀性的影响 [J]. 装备环境工程, 2010, 7(4): 25
9 Wu J, Li X G, Dong C F, et al. Initial corrosion behavior of copper and brass in tropical maritime atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 70
吴 军, 李晓刚, 董超芳 等. 紫铜T2和黄铜H62在热带海洋大气环境中早期腐蚀行为 [J]. 中国腐蚀与防护学报, 2012, 32: 70
10 Gat N, Tabakoff W. Effects of temperature on the behavior of metals under erosion by particulate matter [J]. J. Test. Eval., 1980, 8: 177
doi: 10.1520/JTE11610J
11 Liu F, Xing L K, Zhang Y, et al. A pipeline erosion corrosion and electrochemical test device [P]. China Pat. : 109444236A, 2019
刘 峰, 邢路阔, 张宇 等. 一种管路冲刷腐蚀及电化学测试装置 [P]. 中国专利: 109444236A, 2019))
12 Liu F, Xin Y L, Li X B, et al. A kind of preparation method of metal oxide coating anode [P]. China Pat. : 104846357A, 2015
刘 峰, 辛永磊, 李相波 等. 一种金属氧化物涂层阳极的制备方法 [P]. 中国专利: 104846357A, 2015))
13 Bukhari S M, Fritzsche H, Tun Z. Comprehensive structural characterization of CuNi (90/10) thin films prepared by D.C. magnetron sputtering- Sciencedirect [J]. Thin Solid Films, 2016, 619: 33
doi: 10.1016/j.tsf.2016.10.023
14 Hernández R P B, Pászti Z, de Melo H G, et al. Chemical characterization and anticorrosion properties of corrosion products formed on pure copper in synthetic rainwater of Rio de Janeiro and São Paulo [J]. Corros. Sci., 2010, 52: 826
doi: 10.1016/j.corsci.2009.11.003
15 Ma A L, Jiang S L, Zheng Y G, et al. Corrosion product film formed on the 90/10 copper-nickel tube in natural seawater: composition/structure and formation mechanism [J]. Corros. Sci., 2015, 91: 245
doi: 10.1016/j.corsci.2014.11.028
16 Shi Z Y. Corrosion behavior of C71500 copper-nickel alloy in static and flowing seawater [D]. Beijing: Beijing University of Chemical Technology, 2021
石泽耀. C71500铜镍合金在静态和流动海水中的腐蚀行为研究 [D]. 北京: 北京化工大学, 2021
17 Campbell S A, Radford G J W, Tuck C D S, et al. Corrosion and galvanic compatibility studies of a high-strength copper-nickel alloy [J]. Corrosion, 2002, 58: 57
doi: 10.5006/1.3277305
18 Zheng J H, Bogaerts W F, Lorenzetto P. Erosion–corrosion tests on ITER copper alloys in high temperature water circuit with incident heat flux [J]. Fusion Eng. Des., 2002, 61/62: 649
19 Syrett B C, Macdonald D D. The validity of electrochemical methods for measuring corrosion rates of copper-nickel alloys in sea water [J]. Corrosion, 1979, 35: 11: 505
20 Zhang Z, Yao L A, Gan F X. The effect of surface film on electrochemical behavior of Cu-Ni-alloy [J]. J. Chin. Soc. Corros. Prot., 1987, 7: 143
张 哲, 姚禄安, 甘复兴. 铜镍合金表面膜对其电化学行为的影响 [J]. 中国腐蚀与防护学报, 1987, 7: 143
21 Williams G, Mcmurray H N. Pitting corrosion of steam turbine blading steels: the influence of chromium content, temperature, and chloride ion concentration [J]. Corrosion, 2006, 62: 231
doi: 10.5006/1.3278269
22 North R F, Pryor M J. The influence of corrosion product structure on the corrosion rate of Cu-Ni alloys [J]. Corros. Sci., 1970, 10: 297
doi: 10.1016/S0010-938X(70)80022-1
23 Wang J C. Synergistic effect of liquid-solid two-phase fluid erosion corrosion [J]. J. Henan Sci. Technol., 2013, 32(19): 60
王建才. 液固两相流体冲刷腐蚀的协同作用 [J]. 河南科技, 2013, 32(19): 60
24 Mahdi E, Rauf A, Eltai E O. Effect of temperature and erosion on pitting corrosion of X100 steel in aqueous silica slurries containing bicarbonate and chloride content [J]. Corros. Sci., 2014, 83: 48
doi: 10.1016/j.corsci.2014.01.021
[1] YU Chenjun, ZHANG Tianyi, ZHANG Naiqiang, ZHU Zhongliang. Influence of Thermal Aging on Corrosion Behavior of Ferritic-martensitic Steel P92 in Supercritical Water[J]. 中国腐蚀与防护学报, 2023, 43(6): 1349-1357.
[2] ZHANG Xinyi, LI Cong, WANG Yuxi, HUANG Mei, ZHU Huiping, LIU Fang, LIU Yang, NIU Fenglei. Research Progress on Liquid Metal Corrosion Behavior of Structural Steels for Lead Fast Reactor[J]. 中国腐蚀与防护学报, 2023, 43(6): 1216-1224.
[3] REN Yan, ZHANG Xintao, GAI Xin, XU Jingjun, ZHANG Wei, CHEN Yong, LI Meishuan. High Temperature Oxidation Behavior of Quaternary (Cr2/3Ti1/3)3AlC2 MAX Ceramic in Air and Steam[J]. 中国腐蚀与防护学报, 2023, 43(6): 1284-1292.
[4] GUO Tao, HUANG Feng, HU Qian, LIU Jing. Oxidation Kinetics of 9Ni Steel Billet at High Temperature[J]. 中国腐蚀与防护学报, 2023, 43(4): 882-889.
[5] WU Duoli, WU Haotian, SUN Hui, SHI Jianjun, WEI Xinlong, ZHANG Chao. Research Status and Development of Laser Cladding High Temperature Protective Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 725-736.
[6] ZHOU Zhiping, WU Dakang, ZHANG Hongfu, ZHANG Lei, LI Mingxing, ZHANG Zhixin, ZHONG Xiankang. Tensile Property of L80 Steel in Air at 25-350 ℃ and Its Corrosion Behavior in Simulated Casing Service Conditions at 150-350 ℃[J]. 中国腐蚀与防护学报, 2023, 43(3): 601-610.
[7] LIU Shuyu, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, DUAN Haitao, XIA Siyao, XIA Chunhuai. High Temperature Oxidation and Solid Na2SO4 Induced Corrosion of CVD Aluminide Coating on K444 Alloy in Air[J]. 中国腐蚀与防护学报, 2023, 43(3): 553-560.
[8] LIU Zhihao, LIU Guangming, HE Sifan, DONG Meng, LI Yu, LI Futian, ZHU Ting. High Temperature Corrosion Behavior of F22 Base Metal and Weld in Simulated Coastal Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(3): 594-600.
[9] CHEN Qingguo, TANG Quanhong, QIN Zhenjie, LI Yifan, LI Lei, LI Xuanpeng, YUAN Juntao, SU Hang, FU Anqing. Corrosion Behavior of Hot-dip Aluminum Coating in “High Temperature-salt Deposited-CO2/O2” Multi-degree Coupling Environment[J]. 中国腐蚀与防护学报, 2023, 43(3): 569-577.
[10] XING Xuesong, FAN Baitao, ZHU Xinyu, ZHANG Junying, CHEN Changfeng. Corrosion Characteristics of P110SS Casing Steel for Ultra-deep Well in Artificial Formation Water with Low H2S and High CO2 Content[J]. 中国腐蚀与防护学报, 2023, 43(3): 611-618.
[11] CHEN Hanlin, MA Li, HUANG Guosheng, DU Min. Effects of pH Value, Temperature and Salinity on Film Formation of B30 Cu-Ni Alloy in Seawater[J]. 中国腐蚀与防护学报, 2023, 43(3): 481-493.
[12] QU Zuopeng, ZHANG Beibei, XIE Guangxiao, YANG Yuxi, WANG Yongtian, TIAN Xinli, WANG Haijun. Research Progress on Protection Technology for Waste Incinerator Heating Surfaces[J]. 中国腐蚀与防护学报, 2023, 43(3): 452-459.
[13] ZHOU Wenhui, SONG Jian, CHEN Zehao, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Low Temperature Degradation on Tribological Properties of YSZ Thermal Barrier Coatings[J]. 中国腐蚀与防护学报, 2023, 43(2): 261-270.
[14] SONG Jian, ZHOU Wenhui, WANG Jinlong, SUN Wenyao, CHEN Minghui, WANG Fuhui. Corrosion Behavior of Block Materials of Yttria Stabilized Zirconia with Different Content of Y2O3 in Marine Environment[J]. 中国腐蚀与防护学报, 2023, 43(2): 359-364.
[15] HE Nankai, WANG Yongxin, ZHOU Shengguo, ZHOU Dapeng, LI Jinlong. Oxidation Behavior in Water Vapor and Tribological Property in Atmosphere with 60%Relative Humidity at 580 ℃ for Inconel 718 Alloy[J]. 中国腐蚀与防护学报, 2023, 43(2): 271-279.
No Suggested Reading articles found!