|
|
Effect of Temperature on Erosion-corrosion Behavior of B10 Cu-Ni Alloy Pipe |
WANG Xiao1, LI Ming1, LIU Feng2( ), WANG Zhongping1, LI Xiangbo2, LI Ningwang1 |
1.CRRC Qingdao Sifang Co., Ltd., Qingdao 266111, China 2.State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China |
|
Cite this article:
WANG Xiao, LI Ming, LIU Feng, WANG Zhongping, LI Xiangbo, LI Ningwang. Effect of Temperature on Erosion-corrosion Behavior of B10 Cu-Ni Alloy Pipe. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1329-1338.
|
Abstract The corrosion behavior of B10 Cu-Ni alloy pipe in natural seawater at different temperatures was investigated via pipe flow test device capable of in-situ measurement designed independently by means of electrochemical impedance spectroscope (EIS) and other electrochemical methods, and the corrosion morphology and corrosion products composition were analyzed by scanning electron microscope (SEM) and X-ray photoelectron spectroscope (XPS). The results indicated that the corrosion product film on the surface of B10 pipe became denser with the decrease of temperature in the range of 10-50 ℃, leading to the increase of corrosion resistance of the film and the decrease of corrosion rate of the alloy. The corrosion behavior of B10 pipe in seawater would change with time and temperature. At 10, 25 and 35 ℃, the corrosion rate of B10 pipe gradually decreased with the extension of time, and the corrosion products were mainly Cu2O, NiO and FeOOH, resulting in a better protective effect to the matrix. At 50 ℃, the corrosion products on the surface of B10 pipe were CuO, Ni and FeO, which presented poor protective effect to the substrate.
|
Received: 07 December 2022
32134.14.1005.4537.2022.387
|
|
Corresponding Authors:
LIU Feng, E-mail: liufeng279@126.com
|
1 |
Lu J, Wu J Y. Review on research and application of Cu-Ni alloys [J]. Nonferrous Met. Mater. Eng., 2020, 41(3): 55
|
|
陆 菁, 武家艳. 铜镍合金的研究及其应用综述 [J]. 有色金属材料与工程, 2020, 41(3): 55
|
2 |
Tao H, Yu Y, Zhao G C, et al. Standard status and proposal of B30 copper alloy heat transfer tube for condensers of naval ships [J]. Dev. Appl. Mater., 2021, 36(1): 96
|
|
陶 欢, 郁 炎, 赵国超 等. 舰船冷凝器用B30铜合金传热管标准体系 [J]. 材料开发与应用, 2021, 36(1): 96
|
3 |
Wei M M, Yang B J, Liu Y Y, et al. Research progress and prospect on erosion-corrosion of Cu-Ni alloy pipe in seawater [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 513
|
|
魏木孟, 杨博均, 刘洋洋 等. Cu-Ni合金管海水冲刷腐蚀研究现状及展望 [J]. 中国腐蚀与防护学报, 2016, 36: 513
doi: 10.11902/1005.4537.2016.123
|
4 |
Shen H, Gao F, Zhang G G, et al. Material selection and anti-corrosion measures of seawater piping in warship [J]. Ship Eng., 2002, 24(4): 43
|
|
沈 宏, 高 峰, 张关根 等. 舰船海水管系选材及防腐对策 [J]. 船舶工程, 2002, 24(4): 43
|
5 |
Fan X W, Zhao G F, Zhang S F, et al. Study on corrosion and scaling properties of B30 Cu-Ni alloy in seawater under dynamic conditions [J]. Shandong Chem. Ind., 2018, 47(21): 45
|
|
范旭文, 赵桂锋, 张少峰 等. B30铜镍合金动态条件下在海水中腐蚀与结垢性能研究 [J]. 山东化工, 2018, 47(21): 45
|
6 |
Chi C Y. Research on electrochemical corrosion behavior of 70/30 Cu-Ni alloy in seawater [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009
|
|
迟长云. B30铜镍合金在海水中的腐蚀电化学性能研究 [D]. 南京: 南京航空航天大学, 2009
|
7 |
Chen H L, Ma L, Huang G S, et al. Effect of dissolved oxygen and flow rate of seawater on film formation of B30 Cu-Ni alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 724
|
|
陈翰林, 马 力, 黄国胜 等. 溶解氧和流速对B30铜镍合金在海水中成膜的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 724
doi: 10.11902/1005.4537.2021.260
|
8 |
Sun T T, Li N, Xue J J, et al. Effect of environment factors on corrosion behavior of 90-10 Cu-Ni alloy in seawater [J]. Equip. Environ. Eng., 2010, 7(4): 25
|
|
孙婷婷, 李 宁, 薛建军 等. 环境因素对B10铜镍合金耐蚀性的影响 [J]. 装备环境工程, 2010, 7(4): 25
|
9 |
Wu J, Li X G, Dong C F, et al. Initial corrosion behavior of copper and brass in tropical maritime atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 70
|
|
吴 军, 李晓刚, 董超芳 等. 紫铜T2和黄铜H62在热带海洋大气环境中早期腐蚀行为 [J]. 中国腐蚀与防护学报, 2012, 32: 70
|
10 |
Gat N, Tabakoff W. Effects of temperature on the behavior of metals under erosion by particulate matter [J]. J. Test. Eval., 1980, 8: 177
doi: 10.1520/JTE11610J
|
11 |
Liu F, Xing L K, Zhang Y, et al. A pipeline erosion corrosion and electrochemical test device [P]. China Pat. : 109444236A, 2019
|
|
刘 峰, 邢路阔, 张宇 等. 一种管路冲刷腐蚀及电化学测试装置 [P]. 中国专利: 109444236A, 2019))
|
12 |
Liu F, Xin Y L, Li X B, et al. A kind of preparation method of metal oxide coating anode [P]. China Pat. : 104846357A, 2015
|
|
刘 峰, 辛永磊, 李相波 等. 一种金属氧化物涂层阳极的制备方法 [P]. 中国专利: 104846357A, 2015))
|
13 |
Bukhari S M, Fritzsche H, Tun Z. Comprehensive structural characterization of CuNi (90/10) thin films prepared by D.C. magnetron sputtering- Sciencedirect [J]. Thin Solid Films, 2016, 619: 33
doi: 10.1016/j.tsf.2016.10.023
|
14 |
Hernández R P B, Pászti Z, de Melo H G, et al. Chemical characterization and anticorrosion properties of corrosion products formed on pure copper in synthetic rainwater of Rio de Janeiro and São Paulo [J]. Corros. Sci., 2010, 52: 826
doi: 10.1016/j.corsci.2009.11.003
|
15 |
Ma A L, Jiang S L, Zheng Y G, et al. Corrosion product film formed on the 90/10 copper-nickel tube in natural seawater: composition/structure and formation mechanism [J]. Corros. Sci., 2015, 91: 245
doi: 10.1016/j.corsci.2014.11.028
|
16 |
Shi Z Y. Corrosion behavior of C71500 copper-nickel alloy in static and flowing seawater [D]. Beijing: Beijing University of Chemical Technology, 2021
|
|
石泽耀. C71500铜镍合金在静态和流动海水中的腐蚀行为研究 [D]. 北京: 北京化工大学, 2021
|
17 |
Campbell S A, Radford G J W, Tuck C D S, et al. Corrosion and galvanic compatibility studies of a high-strength copper-nickel alloy [J]. Corrosion, 2002, 58: 57
doi: 10.5006/1.3277305
|
18 |
Zheng J H, Bogaerts W F, Lorenzetto P. Erosion–corrosion tests on ITER copper alloys in high temperature water circuit with incident heat flux [J]. Fusion Eng. Des., 2002, 61/62: 649
|
19 |
Syrett B C, Macdonald D D. The validity of electrochemical methods for measuring corrosion rates of copper-nickel alloys in sea water [J]. Corrosion, 1979, 35: 11: 505
|
20 |
Zhang Z, Yao L A, Gan F X. The effect of surface film on electrochemical behavior of Cu-Ni-alloy [J]. J. Chin. Soc. Corros. Prot., 1987, 7: 143
|
|
张 哲, 姚禄安, 甘复兴. 铜镍合金表面膜对其电化学行为的影响 [J]. 中国腐蚀与防护学报, 1987, 7: 143
|
21 |
Williams G, Mcmurray H N. Pitting corrosion of steam turbine blading steels: the influence of chromium content, temperature, and chloride ion concentration [J]. Corrosion, 2006, 62: 231
doi: 10.5006/1.3278269
|
22 |
North R F, Pryor M J. The influence of corrosion product structure on the corrosion rate of Cu-Ni alloys [J]. Corros. Sci., 1970, 10: 297
doi: 10.1016/S0010-938X(70)80022-1
|
23 |
Wang J C. Synergistic effect of liquid-solid two-phase fluid erosion corrosion [J]. J. Henan Sci. Technol., 2013, 32(19): 60
|
|
王建才. 液固两相流体冲刷腐蚀的协同作用 [J]. 河南科技, 2013, 32(19): 60
|
24 |
Mahdi E, Rauf A, Eltai E O. Effect of temperature and erosion on pitting corrosion of X100 steel in aqueous silica slurries containing bicarbonate and chloride content [J]. Corros. Sci., 2014, 83: 48
doi: 10.1016/j.corsci.2014.01.021
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|