Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (6): 1413-1418    DOI: 10.11902/1005.4537.2022.411
Current Issue | Archive | Adv Search |
Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of Zn-6%Al-3%Mg Coating
SHANG Ting(), JIANG Guangrui, LIU Guanghui, QIN Hancheng
Beijing Key Laboratory of Green Recyclable Process for Iron & steel Production Technology, Shougang Research Institute of Technology, Beijing 100043, China
Cite this article: 

SHANG Ting, JIANG Guangrui, LIU Guanghui, QIN Hancheng. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of Zn-6%Al-3%Mg Coating. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1413-1418.

Download:  HTML  PDF(6793KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Zn-6%Al-3%Mg coated steel plates were subjected to post-heat treatments at 500 ℃-10 min and 700 ℃-10 min, respectively. Then the microstructure, phase composition and corrosion resistance of the Zn-6%Al-3%Mg coated steel plates before and after heat treatment were comparatively characterized by SEM, XRD and neutral salt spray test. The results show that the morphology, phase composition and corrosion products of Zn-6%Al-3%Mg coated steel plate after heat treatment at 500 ℃-10 min are similar to those without heat treated ones, their corrosion mass changes are basically the same. However after heat treatment at 700 ℃-10 min, the coating structure changes from single-layer of multiphase structure to multi-layer of multiphase structure, it is worth noting that there are more Fe oxides in the corrosion products, which are mainly formed by the iron-rich phase precipitated on the surface of the coating. After corrosion test, the zinc-rich surface coating on the steel substrate kept completely intact, while the corresponding corrosion mass gain is 3.2 times of the un-heat treated ones, on the other hand, the corrosion mass loss is 2.2 times of the un-heat treated ones.

Key words:  Zn-Al-Mg coating      heat treatment      corrosion resistance     
Received:  26 December 2022      32134.14.1005.4537.2022.411
ZTFLH:  TG174  
Corresponding Authors:  SHANG Ting, E-mail: happy3happy@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.411     OR     https://www.jcscp.org/EN/Y2023/V43/I6/1413

Fig.1  Cross-sectional (a-c) and surface (d-f) morphologies of the ZnAlMg coating after 0 ℃ (a, d), 500 ℃ (b, e) and 700 ℃ (c, f) heat treatment
PointOMgAlFeZn
A--18.43-81.57
B--0.721.5097.78
C-5.144.69-90.17
D--18.540.7280.74
E--0.822.9596.23
F-3.983.990.7891.25
G38.33---61.67
H--18.8178.962.23
I--1.0722.7576.18
J---74.8125.19
Table 1  Composition of different spots in the cross section of the ZnAlMg coating in Fig.1
Fig.2  XRD patterns of three samples after heat treatment
Fig.3  Macromorphologies of samples heated at 0 ℃ (a), 500 ℃ (b) and 700 ℃ (c) after 1350 h corrosion in neutral salt spray test
Fig.4  Cross-sectional (a-c) and surface (d-f) morphologies of the ZnAlMg coating heated at 0 ℃ (a, d), 500 ℃ (b, e) and 700 ℃ (c, f) after 1350 h corrosion in neutral salt spray test
PointOMgAlFeZn
A10.63-22.658.8857.84
B15.21-0.921.6081.27
C17.593.362.484.9871.59
D25.21-16.3910.7347.66
E18.53-2.530.9877.96
F30.370.9725.971.241.5
G32.70-1.7921.1544.37
H1.94-17.0574.466.55
I2.43-2.2929.7765.51
J---78.9521.05
Table 2  Composition of different spots in the cross section of the ZnAlMg coating in Fig.4
Fig.5  XRD patterns of three samples after 1350 h corrosion in neutral salt spray test
Fig.6  Mass loss (a) and gain (b) of samples heated at different temperatures after 1350 h corrosion in neutral salt spray test
1 Komatsu A, Izutani H, Tsujimura T, et al. Corrosion resistance and protection mechanism of hot-dip Zn-Al-Mg alloy coated steel sheet under accelerated corrosion environment [J]. Tetsu-to-Hagane, 2000, 86: 534
doi: 10.2355/tetsutohagane1955.86.8_534
2 Nishimura K, Shindo H, Okada T, et al. Development and properties of Zn-Mg galvanized steel sheet "DYMAZINC" [J]. Materia Japan, 2001, 40: 292
doi: 10.2320/materia.40.292
3 Morimoto Y, Honda K, Nishimura K, et al. Excellent corrosion-resistant Zn-Al-Mg-Si alloy hot-dip galvanized steel sheet “SUPER DYMA” [J]. Nippon Steel Technical Report, 2003, 87: 24
4 Sohn I R, Kim T C, Ju G I, et al. Anti-corrosion performance and applications of PosMAC® steel [J]. Corros. Sci. Technol., 2021, 20: 7
5 Schouller-Guinet P, Allely C, Volovitch P. ZnAlMg: An innovative metallic coating that offers protection in the harshest environments [A]. Proceedings of the 8th International Conference on Zinc and Zinc Alloy Coated Steel Sheet [C]. Milano: Associazione Italiana Di Metallurgia, 2011: 95
6 Jiang G R, Zheng X B, Zhao X F, et al. Application of the hot-dip galvanized Zn-Al-Mg alloyed coating steel sheet on automobile body [J]. Automob. Technol. Mater., 2021, (4) : 12
蒋光锐, 郑学斌, 赵晓非 等. 汽车车身用热浸镀锌铝镁镀层钢板 [J]. 汽车工艺与材料, 2021, (4) : 12
7 Jiang G R, Liu G H. Microstructure and corrosion resistance of solidified Zn-Al-Mg alloys [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 191
蒋光锐, 刘广会. Zn-Al-Mg合金的凝固组织及其耐腐蚀性能 [J]. 中国腐蚀与防护学报, 2018, 38: 191
doi: 10.11902/1005.4537.2017.022
8 Xie Y X, Jin X Y, Wang L. Development and application of hot-dip galvanized zinc-aluminum-magnesium coating [J]. J. Iron Steel Res., 2017, 29: 167
谢英秀, 金鑫焱, 王 利. 热浸镀锌铝镁镀层开发及应用进展 [J]. 钢铁研究学报, 2017, 29: 167
9 Prosek T, Larché N, Vlot M, et al. Corrosion performance of Zn-Al-Mg coatings in open and confined zones in conditions simulating automotive applications [J]. Mater. Corros., 2010, 61: 412
10 Shimoda N, Ueda K, Kubo Y. Corrosion resistance of several Zn-Al-Mg alloy coated steels [J]. Nippon Steel & Sumitomo Metal Technical Report, 2015, 108: 60
11 Thierry D, Persson D, Luckeneder G, et al. Atmospheric corrosion of ZnAlMg coated steel during long term atmospheric weathering at different worldwide exposure sites [J]. Corros. Sci., 2019, 148: 338
doi: 10.1016/j.corsci.2018.12.033
12 Chang J K, Lin C S, Wang W R. Oxidation and corrosion behavior of commercial 5% Al-Zn coated steel during austenitization heat treatment [J]. Surf. Coat. Technol., 2018, 350: 880
doi: 10.1016/j.surfcoat.2018.03.098
13 Xie Y Y, Hu W X, Cheng Y, et al. Effect of heat treatment process on microstructure and corrosion resistance of Al-10%Si-24%Zn coating [J]. Surf. Coat. Technol., 2020, 401: 126305
doi: 10.1016/j.surfcoat.2020.126305
14 Nogueira T M C, Cruz M A S, Rios P R. Influence of an annealing heat treatment on the microstructure, ductility, and corrosion resistance of a chromated 55 Wt. % Al-Zn coated steel sheet [J]. J. Mater. Eng. Perform., 2001, 10: 314
doi: 10.1361/105994901770345024
15 Wang Y F, Ma D G, Li J Y, et al. Effect of heating system on structure and corrosion resistance of zinc-aluminium-magnesium coating [J]. Hebei Metall., 2021, (8): 28
王言峰, 马德刚, 李建英 等. 加热制度对锌铝镁镀层结构及耐蚀性的影响 [J]. 河北冶金, 2021, (8): 28
16 You K, Ni X H, Li J H, et al. Crack defects analysis and countermeasures of Zn-Al-Mg coated steel caused by high temperature burning treatment [J]. Coat. Prot., 2022, 43(7): 29
尤 坤, 倪雪辉, 李金华 等. 高温灼烧导致的锌铝镁镀层裂纹缺陷分析及其防护措施 [J]. 涂层与防护, 2022, 43(7): 29
17 Chang J K, Lin C S. Microstructural evolution of 11Al-3Mg-Zn ternary alloy-coated steels during austenitization heat treatment [J]. Metall. Mater. Trans., 2017, 48A: 3734
18 Ghatei-Kalashami A, Khan M S, Lee M Y, et al. High-temperature phase evolution of the ZnAlMg coating and its effect on mitigating liquid-metal-embrittlement cracking [J]. Acta Mater., 2022, 229: 117836
doi: 10.1016/j.actamat.2022.117836
19 TsujimuraTakao. Development of Hot-dip Zn-6%Al-3%Mg Alloy Coated Steel Sheet, "ZAM" [R]. Nisshin Steel Technical Report, 2011, (92): 1
[1] SHANG Qiang, MAN Cheng, PANG Kun, CUI Zhongyu, DONG Chaofang, CUI Hongzhi. Mechanism of Post-heat Treatment on Intergranular Corrosion Behavior of SLM-316L Stainless Steel with Different Carbon Contents[J]. 中国腐蚀与防护学报, 2023, 43(6): 1273-1283.
[2] XIAO Wentao, LIU Jing, PENG Jingjing, ZHANG Xian, WU Kaiming. Corrosion Resistance of Two Arc Spraying Coatings on EH36 Steel in Neutral Salt Spray Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
[3] YANG Haifeng, YUAN Zhizhong, LI Jian, ZHOU Naipeng, GAO Feng. Effect of Ni Content on Corrosion Behavior of Cu-bearing Aged Weldable Steels in a Simulated Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[4] CHEN Xiaohan, BAI Yang, WANG Zhichao, CHEN Congzong, ZHANG Yong, CUI Xianlin, ZUO Juanjuan, WANG Tongliang. Preparation and Corrosion Resistance of Surface Tolerant Epoxy Anti-corrosion Primer[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[5] DING Li, ZOU Wenjie, ZHANG Xuejiao, CHEN Jun. Silicon-Zirconium Composite Conversion Film on ADC12 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[6] LIU Chao, CHEN Tianqi, LI Xiaogang. Research Progress on Initiation Mechanism of Local Corrosion Induced by Inclusions in Low Alloy Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[7] ZOU Wenjie, DING Li, ZHANG Xuejiao, CHEN Jun. Epoxy/Organosiloxane Modified Cationic Acrylic Emulsion Composite Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[8] XIAO Meng, WANG Qinying, ZHANG Xingshou, XI Yuchen, BAI Shulin, DONG Lijin, ZHANG Jin, YANG Junjie. Effect of Laser Quenching on Microstructure, Corrosion and Wear Behavior of AISI 4130 Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[9] WU Duoli, WU Haotian, SUN Hui, SHI Jianjun, WEI Xinlong, ZHANG Chao. Research Status and Development of Laser Cladding High Temperature Protective Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 725-736.
[10] WU Jiahao, WU Liang, YAO Wenhui, YUAN Yuan, XIE Zhihui, WANG Jingfeng, PAN Fusheng. Properties of Layered Dihydroxyl Metal (MgAlLa) Oxide Composite Coatings on Different Micro-arc Oxidation Surfaces of Mg-Gd-Y-Zn-Mn Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[11] NI Ya, SHI Fangchang, QI Jiqiu. Effect of Ce on Microstructure and Corrosion Resistance of Zn-0.6Cu-0.3Ti Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 803-811.
[12] HU Qian, GAO Jiayi, GUO Ruisheng, SHI Junqin, WANG Xianzong. Long-term Corrosion of Lubricant Infused Surface with Micro-nano Structures on Anodized Aluminum Oxide[J]. 中国腐蚀与防护学报, 2023, 43(4): 773-780.
[13] XIA Xiaojian, WAN Xinyuan, CHEN Yunxiang, HAN Jiceng, CHEN Yiyang, YAN Kanghua, LIN Deyuan, CHEN Tianpeng, ZUO Xiaomei, SUN Baozhuang, CHENG Xuequn. Effect of Heat Treatments on Corrosion Behavior of 3Cr Low Carbon Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 656-662.
[14] LIANG Chaoxiong, LIANG Xiaohong, HAN Peide. Effect of a New Heat Treatment Process on B Elements Distribution, Second Phase Precipitation and Corrosion Resistance of S31254 Super Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 639-646.
[15] HU Yunfei, CAO Xiangkang, MA Xiaoze, PAN Jinglong, CAI Guangyi, DONG Zehua. Fluorescent Nanofiller Modified Epoxy Coatings for Visualization of Coating Degradation[J]. 中国腐蚀与防护学报, 2023, 43(3): 460-470.
No Suggested Reading articles found!