Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (6): 1339-1348    DOI: 10.11902/1005.4537.2022.412
Current Issue | Archive | Adv Search |
Galvanic Corrosion Behavior of ZCuSn5Pb5Zn5/B10 Couple in Flowing Seawater
XING Shaohua1(), LIU Zhongye2, LIU Jinzeng3, BAI Shuyu1, QIAN Yao4, ZHANG Dalei5
1.State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
2.Military Representative Office of Naval Equipment Department in Xiangtan Region, Xiangtan 411100, China
3.Offshore Oil Engineering (Qingdao) Co., Ltd., Qingdao 266520, China
4.Qingdao Jimo District Bureau of Industry and Information Technology, Qingdao 266205, China
5.School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
Cite this article: 

XING Shaohua, LIU Zhongye, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei. Galvanic Corrosion Behavior of ZCuSn5Pb5Zn5/B10 Couple in Flowing Seawater. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1339-1348.

Download:  HTML  PDF(19143KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Valve is one of the most important components for seawater pipeline, and is widely used in ship, but it suffers from serious corrosion, which leads to leaking or unclosing. Galvanic corrosion between ZCuSn5Pb5Zn5 and B10 is the main cause of such corrosion. In this paper, the galvanic corrosion of the couple ZCuSn5Pb5Zn5/B10 in flowing seawater and the galvanic corrosion mechanism is assessed by means of electrochemical method, SEM and EDS. The results suggest that, in static seawater, the galvanic corrosion rate between ZCuSn5Pb5Zn5 and B10 is very small, the relevant anode and cathode are reversed many times. In flowing seawater of 1, 3 and 5 m/s, the galvanic corrosion rate of ZCuSn5Pb5Zn5 obviously increases, which is 22, 49 and 69 times of that in static seawater respectively. In flowing seawater, the diffusion rate of dissolved oxygen and corrosion products is accelerated and the relevant anodic- and cathodic-reactions are both accelerated, thus the galvanic corrosion rate increases. The galvanic corrosion between ZCuSn5Pb5Zn5 and B10 is controlled by both the ZCuSn5Pb5Zn5 anodic reaction and the B10 cathodic reaction. With the gradually depositions of corrosion products, the anodic- and cathodic-reactions are inhibited, however when the flowing rate is more than 3 m/s, the deposition of corrosion products turns to be difficult, thus cannot provide proper barrier effect to the galvanic corrosion.

Key words:  seawater pipelines      valve      copper nickel alloy      flowing seawater      galvanic corrosion     
Received:  27 December 2022      32134.14.1005.4537.2022.412
ZTFLH:  TG174  
Corresponding Authors:  XING Shaohua, E-mail:xingsh@sunrui.net

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.412     OR     https://www.jcscp.org/EN/Y2023/V43/I6/1339

Fig.1  Schematic diagram of experimental equipment: (a) electrolytic cell and (b) experimental device of pipeline corrosion testing in flowing water (1-Ag/AgCl, 2-B10, 3-ZCuSn5Pb5Zn5, 4-ZCuSn5Pb5Zn5, 5-B10)
Fig.2  Corrosion potential and galvanic corrosion potential in different flow rate seawater: (a) ZCuSn5Pb5Zn5 and B10, (b) ZCuSn5Pb5Zn5/B10
Fig.3  Variation curve of galvanic current of ZCuSn5Pb5Zn5/B10 in different flow rate seawater: (a) static seawater, (b) flowing seawater
Fig.4  Variation curve of galvanic current density and galvanic potential with flow velocity
Fig.5  SEM micrographs of ZCuSn5Pb5Zn5 with corrosion productions: (a) 0 m/s, (b) 1 m/s, (c) 3 m/s, (d) 5 m/s
Fig.6  EDS analysis of elemental composition of ZCuSn5Pb5Zn5 corrosion products: (a) point A in Fig.5d, (b) point B in Fig.5d
Fig.7  3D morphologies of ZCuSn5Pb5Zn5 without corrosion products: (a) 0 m/s, (b) 1 m/s, (c) 3 m/s, (d) 5 m/s
Fig.8  SEM micrographs of ZCuSn5Pb5Zn5 without corrosion products: (a) 0 m/s, (b) 1 m/s, (c) 3 m/s, (d) 5 m/s
Fig.9  SEM micrographs of B10 with corrosion productions: (a) 0 m/s, (b) 1 m/s, (c) 3 m/s, (d) 5 m/s
Fig.10  EDS analysis of elemental composition of B10 corrosion products of A point (a) and B point (b) in Fig.9d
Fig.11  SEM micrographs of B10 without corrosion products: (a) 0 m/s, (b) 1 m/s, (c) 3 m/s, (d) 5 m/s
Fig.12  Corrosion kinetics of ZCuSn5Pb5Zn5/B10 couple in different flow rate seawater
Fig.13  Mechanism of galvanic corrosion of ZCuSn5Pb5Zn5/B10 couple in static seawater
Fig.14  Mechanism of galvanic corrosion of ZCuSn5Pb5Zn5/B10 couple in in 1 m/s flowing seawater
Fig.15  Mechanism of galvanic corrosion of ZCuSn5Pb5Zn5/B10 couple in in 3 m/s flowing seawater
Fig.16  Mechanism of galvanic corrosion of ZCuSn5Pb5Zn5/B10 couple in in 5 m/s flowing seawater
1 Zhou Y F, Wang H R. Review of research on the environmental corrosion of ship seawater systems [J]. Dev. Appl. Mater., 2008, 23(3): 16
周永峰, 王洪仁. 船舶海水管系的环境腐蚀研究进展 [J]. 材料开发与应用, 2008, 23(3): 16
2 Xu X, Wu X W, Zhang G, et al. Tightness failure analysis and protective measures of crevice corrosion for seawater piping in ships [J]. Ship Boat, 2016, 27(5): 63
徐 雄, 武兴伟, 张 刚 等. 船舶海水管路缝隙腐蚀密封性能失效分析及其防护措施 [J]. 船舶, 2016, 27(5): 63
3 Wang P, Pang K, Zhang H F, et al. Analysis of corrosion failure of bronze cut-off valve in marine seawater pipe system [J]. Mater. Prot., 2018, 51(10): 143
王 培, 逄 昆, 张海峰 等. 船舶海水管路青铜截止阀腐蚀失效分析 [J]. 材料保护, 2018, 51(10): 143
4 Sun J X, Jin X, Li M, et al. Analysis on causes of corrosion perforation in bronze globe valve of certain offshore oil field seawater system [J]. Mater. Prot., 2017, 50(3): 95
孙吉星, 金 曦, 李 敏 等. 某海上油田海水系统青铜阀门腐蚀穿孔原因分析 [J]. 材料保护, 2017, 50(3): 95
5 Wang J M, Yang H D, Du M, et al. Corrosion of B10 Cu-Ni alloy in seawater polluted by high concentration of NH 4 + [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 609
王家明, 杨昊东, 杜 敏 等. B10铜镍合金在高浓度NH 4 + 污染海水中腐蚀研究 [J]. 中国腐蚀与防护学报, 2021, 41: 609
doi: 10.11902/1005.4537.2020.222
6 Ma A L, Jiang S L, Zheng Y G, et al. Corrosion product film formed on the 90/10 copper-nickel tube in natural seawater: composition/structure and formation mechanism [J]. Corros. Sci., 2015, 91: 245
doi: 10.1016/j.corsci.2014.11.028
7 Zhang Z Q, Guo Z L, Lei Z F. Applications of copper alloy in shipbuilding [J]. Dev. Appl. Mater., 2006, 21(5): 43
张智强, 郭泽亮, 雷竹芳. 铜合金在舰船上的应用 [J]. 材料开发与应用, 2006, 21(5): 43
8 Guo Z L, Li W J, Wang H R. Electric couple corrosion of a new type nickel-aluminum-bronze alloy [J]. Mater. Prot., 2005, 38(1): 5
郭泽亮, 李文军, 王洪仁. 新型镍铝青铜的电偶腐蚀行为研究 [J]. 材料保护, 2005, 38(1): 5
9 Harvey T J, Wharton J A, Wood R J K. Development of synergy model for erosion-corrosion of carbon steel in a slurry pot [J]. Tribol. Mater. Surf. Interfaces, 2007, 1: 33
doi: 10.1179/175158407X181471
10 Huang G Q. Corrosion of copper alloys in marine splash zone [J]. J. Chin. Soc. Corros. Prot., 2005, 25: 65
黄桂桥. 铜合金在海洋飞溅区的腐蚀 [J]. 中国腐蚀与防护学报, 2005, 25: 65
11 Wang C L, Wu J H, Li Q F. Recent advances and prospect of galvanic corrosion in marine environment [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 416
王春丽, 吴建华, 李庆芬. 海洋环境电偶腐蚀研究现状与展望 [J]. 中国腐蚀与防护学报, 2010, 30: 416
12 Wei M M, Yang B J, Liu Y Y, et al. Research progress and prospect on erosion-corrosion of Cu-Ni alloy pipe in seawater [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 513
魏木孟, 杨博均, 刘洋洋 等. Cu-Ni合金管海水冲刷腐蚀研究现状及展望 [J]. 中国腐蚀与防护学报, 2016, 36: 513
doi: 10.11902/1005.4537.2016.123
13 Guan M E. Research on exfoliation corrosion behavior of copper and copper alloy under the marine environment [J]. Ship Sci. Technol., 2016, 38(8): 184
关蒙恩. 铜及铜合金在海洋环境下的腐蚀剥落行为研究 [J]. 舰船科学技术, 2016, 38(8): 184
14 Zhang D L, Liu R, Liu Y S, et al. Multiscale characterization of seawater pipe erosion of B10 copper-nickel alloy welded joints [J]. Sci. Rep., 2022, 12: 2164
doi: 10.1038/s41598-022-06033-w pmid: 35140304
15 Du J, Wang H R, Du M, et al. Electrochemical corrosion behavior of 90/10 Cu-Ni alloy in flowing seawater [J]. Corros. Sci. Prot. Technol., 2008, 20: 12
杜 娟, 王洪仁, 杜 敏 等. B10铜镍合金流动海水冲刷腐蚀电化学行为 [J]. 腐蚀科学与防护技术, 2008, 20: 12
16 Hu S B, Liu L, Cui Y, et al. Influence of hydrostatic pressure on the corrosion behavior of 90/10 copper-nickel alloy tube under alternating dry and wet condition [J]. Corros. Sci., 2019, 146: 202
doi: 10.1016/j.corsci.2018.10.036
17 Wang X, Liu F, Li Y, et al. Corrosion behavior of B10 Cu-Ni alloy pipe in static and dynamic seawater [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 119
王 晓, 刘 峰, 李 焰 等. 静态和动态海水中B10铜镍合金管的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 119
18 Efird K D. Effect of fluid dynamics on the corrosion of copper-base alloys in sea water [J]. Corrosion, 1977, 33: 3
doi: 10.5006/0010-9312-33.1.3
19 Chen H L, Ma L, Huang G S, et al. Effect of dissolved oxygen and flow rate of seawater on film formation of B30 Cu-Ni alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 724
陈翰林, 马 力, 黄国胜 等. 溶解氧和流速对B30铜镍合金在海水中成膜的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 724
doi: 10.11902/1005.4537.2021.260
20 Bai S Y. Study on B10 alloy seawater pipeline film Formation mechanism and Cathodic protection parameters [D]. Qingdao: China University of Petroleum (East China), 2021
白舒宇. B10海水管路成膜机制及阴极保护参数研究 [D]. 青岛: 中国石油大学 (华东), 2021
21 Xing S H, Liu J Z, Bai S Y, et al. Influence of seawater flow speed on galvanic corrosion behavior of B10/B30 alloys coupling [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 391
邢少华, 刘近增, 白舒宇 等. 海水流速对B10/B30电偶腐蚀行为影响规律研究 [J]. 中国腐蚀与防护学报, 2023, 43: 391
doi: 10.11902/1005.4537.2022.109
22 Liu J Z, Xing S H, Qian Y, et al. Galvanic corrosion behavior of 20# steel/tin bronze couple in flowing seawater [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 127
刘近增, 邢少华, 钱 峣 等. 20#钢/锡青铜偶对在流动海水中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 127
doi: 10.11902/1005.4537.2022.001
[1] LIAO Minxing, LIU Jun, DONG Baojun, LENG Xuesong, CAI Zelun, WU Junwei, HE Jianchao. Effect of Salt Spray Environment on Performance of 1Cr18Ni9Ti Brazed Joint[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[2] ZHANG Qinhao, ZHU Zejie, CAI Haoran, LI Xinran, MENG Xianze, LI Hao, WU Liankui, LUO Zhuangzhu, CAO Fahe. Performance of Pt/IrO x -pH Ultra-micro Electrochemical Sensor and its Application in Study of Galvanic Corrosion of Copper/Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1264-1272.
[3] NI Yumeng, YU Yingjie, YAN Hui, WANG Wei, LI Ying. Finite Element Study on Phase-selective Dissolution Mechanism of CuAl-NiC Abradable Seal Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
[4] WANG Changgang, DANIEL Enobong Felix, LI Chao, DONG Junhua, YANG Hua, ZHANG Dongjiu. Corrosion Mechanisms of Carbon Steel- and Stainless Steel-bolt Fasteners in Marine Environments[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[5] CHEN Hanlin, MA Li, HUANG Guosheng, DU Min. Effects of pH Value, Temperature and Salinity on Film Formation of B30 Cu-Ni Alloy in Seawater[J]. 中国腐蚀与防护学报, 2023, 43(3): 481-493.
[6] XING Shaohua, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei, MA Li. Influence of Seawater Flow Speed on Galvanic Corrosion Behavior of B10/B30 Alloys Coupling[J]. 中国腐蚀与防护学报, 2023, 43(2): 391-398.
[7] LIU Jinzeng, XING Shaohua, QIAN Yao, ZHANG Dalei, MA Li. Galvanic Corrosion Behavior of 20# Steel/Tin Bronze Couple in Flowing Seawater[J]. 中国腐蚀与防护学报, 2023, 43(1): 127-134.
[8] LIU Zeqi, HE Xiaoxiao, QI Kang, HUANG Hualiang. Galvanic Corrosion Behavior for Galvanic Couple of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl Solution[J]. 中国腐蚀与防护学报, 2022, 42(6): 1016-1026.
[9] WANG Yuxin, WU Bo, DAI Leyang, HU Kefeng, WU Jianhua, YANG Yang, YAN Fulei, ZHANG Xianhui. Galvanic Corrosion Behavior for Coupling of Three Low Alloy Steels in Artificial Seawater at Low Temperatures[J]. 中国腐蚀与防护学报, 2022, 42(6): 894-902.
[10] TENG Lin, CHEN Xu. Research Progress of Galvanic Corrosion in Marine Environment[J]. 中国腐蚀与防护学报, 2022, 42(4): 531-539.
[11] CHEN Zhijian, ZHOU Xuejie, CHEN Hao. Corrosion Behavior of Riveted Pair of 6A01 Al-alloy-/304 Stainless Steel-plate Used for High-speed Train[J]. 中国腐蚀与防护学报, 2022, 42(3): 507-512.
[12] ZHANG Zequn, CHEN Zhibin, DONG Qijuan, WU Cong, LI Zongxin, WANG Hezu, WU Fei, ZHANG Bowei, WU Junsheng. Galvanic Corrosion Behavior of Low Alloy Steel, Stainless Steel and Al-Mg Alloy in Simulated Deep Sea Environment[J]. 中国腐蚀与防护学报, 2022, 42(3): 417-424.
[13] HUANG Zhaoxin, ZHU Zhiping, ZHOU Pan, JIANG Yuankang, HE Mingpeng, WANG Zhenggang. Corrosion Characteristics of Propylene Glycol Antifreeze in Valve Cooling System of Converter Station[J]. 中国腐蚀与防护学报, 2022, 42(3): 471-478.
[14] WANG Bingqin, ZHANG Xiaolian, YONG Xingyue, ZHOU Huan, GAO Xinhua. Numerical Simulation of Galvanic Corrosion of TP2Y Copper Pipes Coupled with Steel Pipes in a Seawater Pipe Systems of Ships[J]. 中国腐蚀与防护学报, 2022, 42(2): 200-210.
[15] CAI Jianmin, GUAN Lei, LI Yu. Effect of Surface Treatment on Galvanic Corrosion of 6061 Al-alloy and DC01 Carbon Steel[J]. 中国腐蚀与防护学报, 2022, 42(2): 281-287.
No Suggested Reading articles found!