Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (4): 979-986    DOI: 10.11902/1005.4537.2023.293
Current Issue | Archive | Adv Search |
Simulation and Analysis of Typical Connected Parts For Areoengine Compressor
JIA Jinghuan(), LUO Chen, SUN Zhihua, ZHAN Zhongwei, ZHAO Mingliang
AECC Key Laboratory of Advanced Corrosion and Protection of Aeronautical Materials, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
Cite this article: 

JIA Jinghuan, LUO Chen, SUN Zhihua, ZHAN Zhongwei, ZHAO Mingliang. Simulation and Analysis of Typical Connected Parts For Areoengine Compressor. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 979-986.

Download:  HTML  PDF(13031KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Corrosion behavior of typical connected parts for aeroengines compressor in acid salt spray and humid-heat environment were simulated with CorrosionMaster software, meanwhile, of which the tests by acid salt spray and in humid-heat conditions were carried out according to the national military standards of China (GJB). Finally, the simulation results were verified with the real test results. It follows that the simulation generated corrosion data of the typical connected parts by acid salt spray and in humid-heat environment are consistent with those acquired by the real tests, therefore, the simulation results can provide valuable reference for corrosion risk prediction and evaluation of metal structures.

Key words:  corrosion simulation      aeroengine      CorrosionMaster software      salt spray      humid     
Received:  15 September 2023      32134.14.1005.4537.2023.293
ZTFLH:  TG172  
Corresponding Authors:  JIA Jinghuan, E-mail: jinghuanjia@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.293     OR     https://www.jcscp.org/EN/Y2024/V44/I4/979

StructureComponentMaterial
Typical compressor connection structureCenter linkGH4169
Compression ring1Cr11Ni2W2MoV
Middle lock nutGH4169
Middle nut lock piece1Cr18Ni9Ti
Table 1  The components of engine typical connection
Fig.1  3D model of typical compressor connection structure
StageDurationSalt solution concentrationTemperatureRelative humidity
124 h5%NaCl, pH = 435oC100%
224 h5%NaCl, pH = 435oC20%
Table 2  Acid salt spray simulation test conditions (1 cycle)
StageDurationSalt solution concentrationTemperatureRelative humidity
12 hDeionized water30oC95%
26 hDeionized water60oC95%
38 hDeionized water60oC95%
48 hDeionized water30oC95%
Table 3  Wet heat simulation test conditions (1 cycle)
Fig.2  Corrosion simulation results of typical compressor connection structure in acid salt mist environment: (a) corrosion potetial, (b) corrosion current, (c) corrosion rate, (d) corrosion depth
Fig.3  Corrosion simulation results of typical compressor connection structure in humid heat environment: (a) corrosion potetial, (b) corrosion current, (c) corrosion rate, (d) corrosion depth
Fig.4  Test results of typical compressor connection structure in acid salt mist environment: (a) 0 h, (b-e) 192 h
Fig.5  Micromorphologies of typical compressor connection structure after removing corrosion products after salt spray test: (a1, a2) compression ring, (b1, b2) middle nut lock piece, (c1, c2) center link
Fig.6  Morphology (a) and size (b) of corrosion pit after removal of corrosion products on pressure ring
Fig.7  Test results of typical compressor connection structure in humid heat environment: (a) 0 d, (b-d) 10 d
Fig.8  Micromorphologies of typical compressor connection structure after removing corrosion products after wet heat test: (a1, a2) compression ring, (b1, b2) middle nut lock piece
[1] Lü K H, Wu X L, Li H K, et al. Analysis on induction mechanism of connecting intermittent failure in aviation equipment [J]. Meas. Control Technol., 2020, 39(12): 55
吕克洪, 吴晓龙, 李华康 等. 航空装备连接型间歇故障诱发机理分析 [J]. 测控技术, 2020, 39(12): 55
[2] Li M, Zhu J Y, Li G, et al. Corrosion performance and mechanism of typical aviation metal materials under different acid salt Spray Test Environments [J]. Equip. Environ. Eng., 2019, 16(4): 38
李 明, 朱金阳, 李 刚 等. 典型航空装备用金属材料在不同酸性盐雾环境下的腐蚀效应及机理 [J]. 装备环境工程, 2019, 16(4): 38
[3] Jia J H, Liu M, Luo C, et al. Corrosion and aging behavior of 2A97 Al-Li alloy with typical protective coatings in tropical marine atmosphere environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 143
贾静焕, 刘 明, 骆晨 等. 2A97铝锂合金典型防护涂层热带海洋大气环境腐蚀老化行为 [J]. 中国腐蚀与防护学报, 2023, 43: 143
doi: 10.11902/1005.4537.2022.277
[4] Liu Y, Mei R X, Li W S, et al. Optimal selection of protective coatings for stainless steel-titanium alloy fasteners based on corrosion simulation [J]. Int. J. Electrochem. Sci., 2023, 18: 100142
[5] Feng Y F, Fang Z G, Zhao Y. Status, challenge and prospect of the technology of corrosion simulation on navy equipment [J]. Mater. China, 2020, 39: 179
冯亚菲, 方志刚, 赵 伊. 海军装备腐蚀仿真技术现状、挑战和展望 [J]. 中国材料进展, 2020, 39: 179
[6] Liu Q, Yu D Z, Wang L, et al. Acceleration test and corrosion simulation of aviation electrical connectors in marine environment [J]. Equip. Environ. Eng., 2021, 18(11): 18
刘 琦, 郁大照, 王 琳 等. 航空电连接器海洋环境加速试验与腐蚀仿真研究 [J]. 装备环境工程, 2021, 18(11): 18
[7] Chen Y L, Huang H L, Zhang Y, et al. Development and application of galvanic corrosion simulation for aircraft structure [J]. Equip. Environ. Eng., 2020, 17(5): 47
陈跃良, 黄海亮, 张 勇 等. 飞机结构电偶腐蚀仿真研究进展及应用方法 [J]. 装备环境工程, 2020, 17(5): 47
[8] Chen Y L, Wang A D, Bian G X, et al. Simulation of galvanic corrosion of three electrodes in marine environment [J]. J. Beijing Univ. Aeronaut. Astronaut., 2018, 44: 1808
陈跃良, 王安东, 卞贵学 等. 海洋环境下三电极的电偶腐蚀仿真 [J]. 北京航空航天大学学报, 2018, 44: 1808
[9] Zhang T F, Zhang Y, Huang H L, et al. Simulation and experimental verification of localized corrosion of an aircraft structure [J]. Corros. Prot., 2019, 40: 523
张泰峰, 张 勇, 黄海亮 等. 某型飞机结构件局部腐蚀仿真与试验验证 [J]. 腐蚀与防护, 2019, 40: 523
[10] Shi P F, Duan G Q, Guo Q, et al. Simulation of multi-metal coupling corrosion behavior based on COMSOL [J]. Corros. Prot., 2022, 43(09): 59
石鹏飞, 段国庆, 郭倩 等. 基于COMSOL的多金属耦合腐蚀行为仿真 [J]. 腐蚀与防护, 2022, 43(9): 59
[11] Cao W, Ji K Z, Hu Z, et al. Corrosion behaviour simulation of 2A12 aluminum alloy in marine environment [J]. Spec. Cast. Nonferrous Alloy, 2020, 40: 1218
曹 玮, 纪凯志, 胡 志 等. 2A12航空铝合金在海洋环境中腐蚀行为仿真研究 [J]. 特种铸造及有色合金, 2020, 40: 1218
[12] Zhang D D, Wang J H, Xu H Y, et al. Corrosion simulation analysis of lower support arm of vertical fin based on CorrosionMaster [J]. Corros. Prot., 2021, 42(1): 42
张丹丹, 王建华, 徐环宇 等. 基于CorrosionMaster的垂尾下支臂腐蚀仿真分析 [J]. 腐蚀与防护, 2021, 42(1): 42
[13] Wang W Q, Yu Z F, Cui Y, et al. Revealing of corrosion behavior of GH4169 under the alternate environment of intermediate temperature NaCl spraying and marine atmosphere [J]. J. Mater. Res. Technol., 2023, 22: 2316
[14] Jiang W T, Yuan X D, Li Z Z, et al. Electrochemical behavior of GH4169 alloy in simulated marine environment [J]. J. Shandong Indust. Technol., 2023, (2): 31
姜文韬, 袁兴栋, 李子哲 等. 模拟海洋环境下GH4169合金电化学行为 [J]. 山东工业技术, 2023, (2): 31
[15] Feng H X, Zhao L X, Liu E Z, et al. Effect of chromium quality on inclusions in GH4169 ingot [J]. Chin. J. Mater. Res., 2023, 37: 136
doi: 10.11901/1005.3093.2021.535
冯晗旭, 赵连祥, 刘恩泽 等. 铬对GH4169母合金中夹杂物的影响 [J]. 材料研究学报, 2023, 37: 136
doi: 10.11901/1005.3093.2021.535
[16] Wang Y, Zhao Q C, Wang L, et al. Effect of marine atmospheric environment on corrosion of low temperature aluminizing 1Cr11Ni2W2MoV stainless steel [J]. Environ. Technol., 2019, (): 10
王 永, 赵全成, 王 玲 等. 海洋大气环境对低温渗铝1Cr11Ni2W2MoV钢腐蚀影响 [J]. 环境技术, 2019, (): 10
[17] Wu W, Hong Y, Xu X X, et al. Effect of annealing time on the microstructure and SCC behavior of an austenite-based low-density steel in a marine atmosphere [J]. Corros. Sci., 2022, 205: 110466
[18] Chang L T, Grace Burke M, Mukahiwa K, et al. The effect of martensite on stress corrosion crack initiation of austenitic stainless steels in high-temperature hydrogenated water [J]. Corros. Sci., 2021, 189: 109600
[19] Yu Z F, Liu L, Liu R, et al. Corrosion behavior of GH4169 alloy under alternating oxidation at 900oC and solution immersion [J]. Materials (Basel), 2019, 12: 1503
[20] Repukaiti R, Hutcheson H C, Betancor Abreu A M, et al. Effect of chromium on corrosion resistance of Ni-Cr-Mo-Gd alloys in seawater [J]. J. Nucl. Mater., 2023, 584: 154581
[1] SHI Chao, LI Jiahao, WANG Rongxiang, ZHANG Bo, ZHOU Lanxin, LIU Guangming, SHAO Yawei. Effect of Different Bias Voltages on Anti-corrosion Properties of Multi-arc Ion Plated Al-coatings on 45# Carbon Steel[J]. 中国腐蚀与防护学报, 2024, 44(2): 323-334.
[2] CHANG Xueting, SONG Jiaqi, WANG Bing, WANG Dongsheng, CHEN Wencong, WANG Haifeng. Effect of Micro-alloying with Cr, N and Al on Corrosion Resistance of High Manganese Austenitic Steel in Acidic Salt Spray Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 47-58.
[3] XIAO Wentao, LIU Jing, PENG Jingjing, ZHANG Xian, WU Kaiming. Corrosion Resistance of Two Arc Spraying Coatings on EH36 Steel in Neutral Salt Spray Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
[4] DING Li, ZOU Wenjie, ZHANG Xuejiao, CHEN Jun. Silicon-Zirconium Composite Conversion Film on ADC12 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[5] LIU Yichao, ZHONG Xiankang, HU Junying. Characteristics and Mechanisms of Elemental Sulfur Induced Corrosion of Sulfur-resistant Steels in Wet Flow CO2 Environment[J]. 中国腐蚀与防护学报, 2022, 42(3): 369-377.
[6] Chao FENG, Bicao PENG, Yi XIE, Jun WANG, Minghuan LI, Tangqing WU, Fucheng YIN. Corrosion Behavior of T91 Steel by Salt Spray with 0.1%NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 583-589.
[7] Dongliang LI,Guiqin FU,Miaoyong ZHU. Effect of Si on Corrosion Behavior of Model Bridge Steels by Alternative Wetting/drying Test in an Artificial Medium Simulated Hot and Humid Atmosphere of Marine and Industrial Area[J]. 中国腐蚀与防护学报, 2016, 36(5): 433-440.
[8] BI Qiang, ZHANG Pingze, HUANG Jun, WEI Dongbo, LI Wei. MICROSTRUCTURE AND CORROSION RESISTANCE OF Ta MODIFIED LAYER FORMED BY DOUBLE GLOW PLASMA SURFACE METALLURGY[J]. 中国腐蚀与防护学报, 2012, 32(5): 364-368.
[9] LIN Jiyue, LIU Guangming,CHEN Gang. INFLUENCE OF DDS CONTENT ON THE PROPERTIES OF ORGANOSILICONE/SiO2 HYBRID COATINGS[J]. 中国腐蚀与防护学报, 2011, 31(2): 116-120.
[10] FU Ruidong, HE Miao, LUAN Guohong, DONG Chunlin,KANG Ju. CORROSION BEHAVIOR OF FRICTION STIR WELDED JOINT OF 2024 ALUMINUM ALLOYS UNDER ACID SALT SPRAYING[J]. 中国腐蚀与防护学报, 2010, 30(5): 396-402.
[11] CUI Jihong, CAI Jianping, JIA Chengchang. PITTING CORROSION OF HIGH STRENGTH ALUMINUM ALLOYS IN SALT SPRAY TEST[J]. 中国腐蚀与防护学报, 2010, 30(3): 197-202.
[12] LUAN Guohong, FU Ruidong, DONG Chunlin, HE Miao,KANG Ju. CORROSION BEHAVIORS OF FRICTION STIR WELDED JOINT OF 7075 ALUMINUM ALLOYS UNDER NATURAL SALT SPRAY[J]. 中国腐蚀与防护学报, 2010, 30(3): 236-240.
[13] LI Zhuang, XIA Ming, GUAN Penglai, GUO Xiangmin. ELECTROCHEMICAL CORROSION BEHAVIOR OF TRIP STEEL IN 3.5%NaCl SOLUTION[J]. 中国腐蚀与防护学报, 2010, 30(3): 203-206.
[14] ;. THE CHARACTERIZATION OF ANCIENT CHINESE WU ZHU COIN OF HAN DYNASTY AND ITS CORROSION MECHANISM[J]. 中国腐蚀与防护学报, 2007, 27(5): 303-308 .
[15] ;. Influence of Marine Atmosphere Humidity On Initial Corrosion of LY12[J]. 中国腐蚀与防护学报, 2007, 27(3): 134-136 .
No Suggested Reading articles found!