|
|
Research Progress on Corrosion and Protection of Corrosion-resistant Mg-Li Alloys |
TIAN Guangyuan1, YAN Chengming1, YANG Zhihao1, WANG Junsheng1,2( ) |
1.School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China 2.Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China |
|
Cite this article:
TIAN Guangyuan, YAN Chengming, YANG Zhihao, WANG Junsheng. Research Progress on Corrosion and Protection of Corrosion-resistant Mg-Li Alloys. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1255-1263.
|
Abstract Mg-Li alloys with high specific strength and stiffness are ideal metal structural engineering materials for aerospace due to their excellent weight reduction effect. However, their poor corrosion resistance severely limits the wide application in some service environments. Therefore, in order to meet the demand of application, it is still necessary to adjust and optimize the composition of corrosion resistant Mg-Li alloys and improve its preparation process in the future. The research status on corrosion mechanism and different types of surface protection methods (metallic coating, anodic oxidation, conductive-shielded polymer coating, and smart coating), as well as future applications of corrosion-resistant Mg-Li alloys were summarized in this paper. Meanwhile, the advantages and limitation of different types of corrosion protection methods were analyzed, and the future research directions of corrosion and protection for corrosion resistant Mg-Li alloys are discussed so that to provide new ideas for future development of higher corrosion-resistant Mg-Li alloys.
|
Received: 28 September 2022
32134.14.1005.4537.2022.300
|
|
Fund: National Natural Science Foundation of China(52073030);National Natural Science Foundation of China-Guangxi Joint Fund(U20A20276) |
Corresponding Authors:
WANG Junsheng, E-mail: junsheng.wang@bit.edu.cn
|
1 |
Feng S, Liu W C, Zhao J, et al. Effect of extrusion ratio on microstructure and mechanical properties of Mg-8Li-3Al-2Zn-0.5Y alloy with duplex structure [J]. Mater. Sci. Eng., 2017, 692A: 9
|
2 |
Peng X, Liu W C, Wu G H. Effects of Li content on microstructure and mechanical properties of as-cast Mg-xLi-3Al-2Zn-0.5Y alloys [J]. Trans. Nonferrous Met. Soc. China, 2022, 32: 838
doi: 10.1016/S1003-6326(22)65837-0
|
3 |
Ouyang Y B, Kang H J, Guo E Y, et al. Thermo-driven oleogel-based self-healing slippery surface behaving superior corrosion inhibition to Mg-Li alloy [J]. J. Magnes. Alloy., 2022, doi: 10.1016/j.jma.2022.07.006
|
4 |
Zhang C, Wu L, Zhao Z L, et al. Effect of the Al-Si eutectic on the microstructure and corrosion behavior of the single-phase Mg alloy Mg-4Li [J]. J. Magnes. Alloy., 2021, 9: 1339
doi: 10.1016/j.jma.2019.08.004
|
5 |
Ouyang Y B, Chen Z N, Guo E Y, et al. Bioinspired superhydrophobic surface via one-step electrodeposition and its corrosion inhibition for Mg-Li alloy [J]. Colloids Surf., 2022, 648A: 129145
|
6 |
Wang B J, Luan J Y, Xu D K, et al. Research progress on the corrosion behavior of magnesium-lithium-based alloys: a review [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 32: 1
doi: 10.1007/s40195-018-0847-9
|
7 |
Sun Y H, Wang R C, Peng C Q, et al. Corrosion behavior and surface treatment of superlight Mg-Li alloys [J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 1455
doi: 10.1016/S1003-6326(17)60167-5
|
8 |
Ye J Y, Feng Y, He Y Q, et al. Effect of extrusion on microstructure, mechanical properties and corrosion behavior of Mg-5Li-5 Al-0.6Y alloy [J]. Heat Treat. Met., 2021, 46(8): 85
|
|
叶佳钰, 冯 艳, 贺玉卿 等. 挤压对Mg-5Li-5Al-0.6Y合金组织、力学性能和腐蚀行为的影响 [J]. 金属热处理, 2021, 46(8): 85
doi: 10.13251/j.issn.0254-6051.2021.08.017
|
9 |
Yang H B, Wu L, Jiang B, et al. Clarifying the roles of grain boundary and grain orientation on the corrosion and discharge processes of α-Mg based Mg-Li alloys for primary Mg-air batteries [J]. J. Mater. Sci. Technol., 2021, 62: 128
doi: 10.1016/j.jmst.2020.05.067
|
10 |
Nene S S, Kashyap B P, Prabhu N, et al. Biocorrosion and biodegradation behavior of ultralight Mg-4Li-1Ca (LC41) alloy in simulated body fluid for degradable implant applications [J]. J. Mater. Sci., 2015, 50: 3041
doi: 10.1007/s10853-015-8846-y
|
11 |
Song Y W, Shan D Y, Chen R S, et al. Corrosion characterization of Mg-8Li alloy in NaCl solution [J]. Corros. Sci., 2009, 51: 1087
doi: 10.1016/j.corsci.2009.03.011
|
12 |
Song Y W, Shan D Y, Chen R S, et al. Investigation of surface oxide film on magnesium lithium alloy [J]. J. Alloy. Compd., 2009, 484: 585
doi: 10.1016/j.jallcom.2009.04.137
|
13 |
Xu W Q, Birbilis N, Sha G, et al. A high-specific-strength and corrosion-resistant magnesium alloy [J]. Nat. Mater., 2015, 14: 1229
doi: 10.1038/nmat4435
pmid: 26480229
|
14 |
Zheng L, Wang M T, Yu B Y. Research progress of cold spraying coating technology for Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 22
|
|
郑 黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 22
|
15 |
Sharma A K, Rani R U, Malek A, et al. Black anodizing of a magnesium-lithium alloy [J]. Met. Finish., 1996, 94: 16
|
16 |
Ono S, Suzuki Y, Asoh H, et al. Microstructure of anodic films grown on magnesium-lithium-yttrium ultra light alloy [J]. Mater. Sci. Forum, 2003, 426-432: 581
doi: 10.4028/www.scientific.net/MSF.426-432
|
17 |
Yang X W, Wang G X, Dong G J, et al. Effects of phytic acid on anodic film for Mg-Li alloy [J]. Electroplat. Pollut. Control, 2010, 30(2): 33
|
|
杨潇薇, 王桂香, 董国君 等. 植酸对镁锂合金阳极氧化膜的影响 [J]. 电镀与环保, 2010, 30(2): 33
|
18 |
Peng X, Wu G H, Liu W C, et al. Corrosion mechanism and surface protection of Mg-Li alloy [J]. Chin. J. Nonferrous Met., 2022, 32: 1
doi: 10.1016/S1003-6326(21)65776-X
|
|
彭 翔, 吴国华, 刘文才 等. Mg-Li合金的腐蚀机理与表面防护 [J]. 中国有色金属学报, 2022, 32: 1
|
19 |
Shi Z M, Song G L, Atrens A. Influence of anodising current on the corrosion resistance of anodised AZ91D magnesium alloy [J]. Corros. Sci., 2006, 48: 1939
doi: 10.1016/j.corsci.2005.08.004
|
20 |
Cui X J, Ping J. Research progress of microarc oxidation for corrosion prevention of Mg alloys [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 87
|
|
崔学军, 平 静. 微弧氧化及其在镁合金腐蚀防护领域的研究进展 [J]. 中国腐蚀与防护学报, 2018, 38: 87
doi: 10.11902/1005.4537.2018.036
|
21 |
Wu G Q, Zhao D C, Lin X, et al. Investigation of an environmentally friendly coloring coating for magnesium-lithium alloy micro-arc oxidation [J]. Surf. Interfaces, 2020, 20: 100513
|
22 |
Zhang J M, Wang K, Duan X, et al. Effect of hydrothermal treatment time on microstructure and corrosion behavior of micro-arc oxidation/layered double hydroxide composite coatings on LA103Z Mg-Li alloy in 3.5% NaCl solution [J]. J. Mater. Eng. Perform., 2020, 29: 4032
doi: 10.1007/s11665-020-04906-7
|
23 |
Li Z J, Wang X X, Dong X L, et al. Creating high-performance bi-functional composite coatings on magnesium-8lithium alloy through electrochemical surface engineering with highly enhanced corrosion and wear protection [J]. J. Alloy. Compd., 2020, 818: 153341
doi: 10.1016/j.jallcom.2019.153341
|
24 |
Ji P, Long R Y, Hou L G, et al. Study on hydrophobicity and wettability transition of Ni-Cu-SiC coating on Mg-Li alloy [J]. Surf. Coat. Technol., 2018, 350: 428
doi: 10.1016/j.surfcoat.2018.07.038
|
25 |
Yin T T, Wu R Z, Leng Z, et al. The process of electroplating with Cu on the surface of Mg-Li alloy [J]. Surf. Coat. Technol., 2013, 225: 119
doi: 10.1016/j.surfcoat.2013.03.024
|
26 |
Tian W P, Guo L S, Wang Y H, et al. Effect of Cu-/Ag-activation on growth and corrosion resistance of electroless plated Ni-film on plasma electrolytic oxidation coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 573
|
|
田卫平, 郭良帅, 王宇航 等. Cu/Ag活化对微弧氧化涂层表面化学镀层生长及耐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 573
doi: 10.11902/1005.4537.2021.151
|
27 |
Zou Y, Zhang Z W, Liu S Y, et al. Ultrasonic-assisted electroless Ni-P plating on dual phase Mg-Li alloy [J]. J. Electrochem. Soc., 2014, 162: C64
doi: 10.1149/2.0841501jes
|
28 |
Li D Y, Cui X F, Wen X, et al. Effect of CeO2 nanoparticles modified graphene oxide on electroless Ni-P coating for Mg-Li alloys [J]. Appl. Surf. Sci., 2022, 593: 153381
doi: 10.1016/j.apsusc.2022.153381
|
29 |
Sun Y J, Yang R, Xie L, et al. Interfacial bonding mechanism and properties of HVOF-sprayed Fe-based amorphous coatings on LA141 magnesium alloy substrate [J]. Surf. Coat. Technol., 2021, 426: 127801
doi: 10.1016/j.surfcoat.2021.127801
|
30 |
Jiang L P, Cui X F, Jin G, et al. Synthesis and microstructure, properties characterization of Ni-Ti-Cu/Cu-Al functionally graded coating on Mg-Li alloy by laser cladding [J]. Appl. Surf. Sci., 2022, 575: 151645
doi: 10.1016/j.apsusc.2021.151645
|
31 |
Li J Y, Dai D Y, Qian C, et al. Corrosion behavior of PANI nanofiber/modified GO/waterborne epoxy composite coating on stainless steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 156
|
|
李建永, 代殿宇, 钱 程 等. 不锈钢表面聚苯胺纳米纤维/改性氧化石墨烯/水性环氧复合涂层的制备与防护性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 156
doi: 10.11902/1005.4537.2020.271
|
32 |
Maurya R, Siddiqui A R, Katiyar P K, et al. Mechanical, tribological and anti-corrosive properties of polyaniline/graphene coated Mg-9Li-7Al-1Sn and Mg-9Li-5Al-3Sn-1Zn alloys [J]. J. Mater. Sci. Technol., 2019, 35: 1767
doi: 10.1016/j.jmst.2019.03.028
|
33 |
Chen X J, Shen K J. Anti-corrosion properties of polyaniline containing coatings on Mg-Li alloy [J]. Corros. Sci. Prot. Technol., 2009, 21: 384
|
|
陈兴娟, 沈科金. 镁锂合金表面含聚苯胺复合涂层的防腐性能研究 [J]. 腐蚀科学与防护技术, 2009, 21: 384
|
34 |
Li Y F, Li J Y, Gao X H, et al. Synthesis of stabilized dispersion covalently-jointed SiO2@polyaniline with core-shell structure and anticorrosion performance of its hydrophobic coating for Mg-Li alloy [J]. Appl. Surf. Sci., 2018, 462: 362
doi: 10.1016/j.apsusc.2018.08.118
|
35 |
Chen S B, Yin C Q, Wang Y, et al. Developing polydopamine modified molybdenum disulfide/epoxy resin powder coatings with enhanced anticorrosion performance and wear resistance on magnesium lithium alloys [J]. J. Magnes. Alloy., 2022, 10, 2534
doi: 10.1016/j.jma.2021.08.007
|
36 |
Gnedenkov S V, Sinebryukhov S L, Mashtalyar D V, et al. Composite fluoropolymer coatings on the MA8 magnesium alloy surface [J]. Corros. Sci., 2016, 111: 175
doi: 10.1016/j.corsci.2016.04.052
|
37 |
Yu C, Cui L Y, Zhou Y F, et al. Self-degradation of micro-arc oxidation/chitosan composite coating on Mg-4Li-1Ca alloy [J]. Surf. Coat. Tech., 2018, 344: 1
doi: 10.1016/j.surfcoat.2018.03.007
|
38 |
Yang X Y, Yang Y T, Lu X P, et al. Research progress of corrosion Inhibitor for Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 435
|
|
杨欣宇, 杨云天, 卢小鹏 等. 镁合金缓蚀剂研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 435
doi: 10.11902/1005.4537.2021.295
|
39 |
Nazeer A A, Madkour M. Potential use of smart coatings for corrosion protection of metals and alloys: a review [J]. J. Mol. Liquids, 2018, 253: 11
doi: 10.1016/j.molliq.2018.01.027
|
40 |
Tian G Y, Zhao J, Li S H, et al. Preparation and performance analysis of different types of corrosion protective coatings on carbon metal surfaces [J]. Mater. Prot., 2019, 52(8): 149
|
|
田光元, 赵 晶, 李生虎 等. 碳钢表面不同耐蚀涂层的制备与性能浅析 [J]. 材料保护, 2019, 52(8): 149
|
41 |
Ulaeto S B, Rajan R, Pancrecious J K, et al. Developments in smart anticorrosive coatings with multifunctional characteristics [J]. Prog. Org. Coat., 2017, 111: 294
|
42 |
Wang Y L, Zhu Y H, Li C, et al. Smart epoxy coating containing Ce-MCM-22 zeolites for corrosion protection of Mg-Li alloy [J]. Appl. Surf. Sci., 2016, 369: 384
doi: 10.1016/j.apsusc.2016.02.102
|
43 |
Cui L Y, Wei G B, Han Z Z, et al. In vitro corrosion resistance and antibacterial performance of novel tin dioxide-doped calcium phosphate coating on degradable Mg-1Li-1Ca alloy [J]. J. Mater. Sci. Technol., 2019, 35: 254
doi: 10.1016/j.jmst.2018.09.052
|
44 |
Li Y F, Gao W B, Shi L Z, et al. Preparation of superhydrophobic coating and its corrosion resistance to Mg-Li alloy [J]. China Surf. Eng., 2020, 33(5): 1
|
|
李玉峰, 高文博, 史凌志 等. 超疏水涂层的制备及其对Mg-Li合金的防腐蚀性能 [J]. 中国表面工程, 2020, 33(5): 1
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|