Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (6): 1247-1254    DOI: 10.11902/1005.4537.2022.354
Current Issue | Archive | Adv Search |
Effect of Second Phase on Corrosion Behavior of Friction-stir-welded Joints of 2xxx Series Al-alloy
ZHONG Jiaxin1, GUAN Lei1(), LI Yu2, HUANG Jiayong2, SHI Lei3
1.Guangzhou Key Laboratory of Nontraditional Machining and Equipment, State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
2.CSSC Huangpu Wenchong Shipbuilding Company Limited, Guangdong Provincial Key Laboratory of Advanced Welding Technology for Ships, Guangzhou 510715, China
3.Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
Cite this article: 

ZHONG Jiaxin, GUAN Lei, LI Yu, HUANG Jiayong, SHI Lei. Effect of Second Phase on Corrosion Behavior of Friction-stir-welded Joints of 2xxx Series Al-alloy. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1247-1254.

Download:  HTML  PDF(4612KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Friction stir welding, as a solid state bonding process, can effectively solve the welding problems of 2xxx series Al-alloy in engineering applications. However, during friction stir welding process, every local area of the welded joint has experienced distinctive thermal cycling and material plastic flow, therefore, different local areas may exhibit obviously differences in their microstructure evolution, as well as in corrosion behavior and corrosion mechanism. In this paper, the corrosion types, positions of corrosion initiation and relevant inducing factors for friction stir welded joints of 2xxx series Al-alloy were reviewed, meanwhile, the relevant corrosion mechanism of weld joints and corresponding methods of improving corrosion resistance for the welded joints were also summerized.

Key words:  friction stir welding      Al-alloy      microstructure      corrosion behavior     
Received:  16 November 2022      32134.14.1005.4537.2022.354
ZTFLH:  TG 174  
Fund: Natural Science Foundation of Guangdong Province(2021A1515010967);Science and Technology Program of Guangzhou(202102020723);Science and Technology Program of Guangzhou(202102020626);China Postdoctoral Science Foundation(2020M682929)
Corresponding Authors:  GUAN Lei, E-mail: lguan@gdut.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.354     OR     https://www.jcscp.org/EN/Y2023/V43/I6/1247

Fig.1  Schematic diagram of the friction stir welding process[2]
ElementIntermetallic 1Intermetallic 2
Al59.9576.32
Cu19.4912.99
Mg20.40-
Fe-5.63
Mn-4.36
Si-0.19
Table 1  EDS analysis of two second phases[15]
Fig.2  SEM image of 2024 aluminum alloy after polishing,1-7 are Al-Cu-Mg particles while 8-15 are Al-Cu-Mn-Fe particles (a), magnified Al-Cu-Mg particles (b) and magnified Al-Cu-Mn-Fe particles (c)[12]
Fig.3  Macrostructure presenting the regions generated during the FSW process (a), TMAZ on the RS (b), HAZ on the AS (c) and TMAZ on the AS (d)[28]
Al-alloyCorrosion typeCorrosion areaCorrosion inducing sourceReference
2024PittingNZUniformly distributed fine S phase[27]
2060-T8Intergranular corrosion

NZ&TMAZ

HAZ

The Cu rich phase at grain boundary[29, 30]
2024-T351PittingHAZ, located near to the TMAZThe coarse S phase in the grain[14, 31~33]
Intergranular corrosionThe continuous S phase at grain boundary
2098-T351, 2050-T3Exfoliation & intergranular corrosionHAZT1 phase at grain boundary、 sub-grain boundary[34, 35]
2014,2198-T851,2219Corrosion resistance is better than the base metalDissolution of Al2Cu/T1 phase[36~39]
Table 2  Summary of corrosion behaviour of FSWed joints of 2xxx series aluminum alloy
MethorAl-alloyResultReference
Reduce heat input during weldingReduce the welding speed2024-T4The second-phase particles were dissolved and became smaller in size with segregation of the Cu elements at the grain boundary decreased[41]
Reduce the rotational speed2219-T87-[42]
Water cooling2219-T62, 2014θ(Al2Cu) phase was refined and the PFZ region was absent[39, 43]
Post welding heat treatmentartificial ageing of 8 and 9 h2014-T6-[44]
Surface treatmentSurface coating2024-T351, 2219-T87The grain had refined and the residual stress had reduced[45, 46]
Laser shock peening2024-T351The grain had refined, the phase had increased and the high density dislocation appeared[47]
ultrasonic impact treatment2A12[48]
2219-T6The grain had refined,the precipitated phase had dissolved[49]
laser surface melting2219The surface S phase had dissolved and the second phase was uniformly distributed[50]
in situ shot-peening-assisted cold spray coatingCoated porosity had reduced[51]
Table 3  Summary of methods employed to improve the corrosion resistance of FSWed joints of 2xxx series aluminum alloy
1 Majeed T, Mehta Y, Siddiquee A N. Precipitation-dependent corrosion analysis of heat treatable aluminum alloys via friction stir welding, a review [J]. Proc. Inst. Mech. Eng., 2021, 235C: 7600
2 Threadgill P L, Leonard A J, Shercliff H R, et al. Friction stir welding of aluminium alloys [J]. Int. Mater. Rev., 2009, 54: 49
doi: 10.1179/174328009X411136
3 Mishra R S, Ma Z Y. Friction stir welding and processing [J]. Mater. Sci. Eng., 2005, 50R: 1
4 Benavides S, Li Y, Murr L E, et al. Low-temperature friction-stir welding of 2024 aluminum [J]. Scr. Mater., 1999, 41: 809
doi: 10.1016/S1359-6462(99)00226-2
5 Jonckheere C, de Meester B, Denquin A, et al. Torque, temperature and hardening precipitation evolution in dissimilar friction stir welds between 6061-T6 and 2014-T6 aluminum alloys [J]. J. Mater. Process. Technol., 2013, 213: 826
doi: 10.1016/j.jmatprotec.2013.01.001
6 Wang S C, Starink M J. Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg- (Li) based alloys [J]. Int. Mater. Rev., 2005, 50: 193
doi: 10.1179/174328005X14357
7 Fan G H, Geng L, Meng Q C, et al. The characterization and formation mechanism of nanosized insoluble intermetallic phase in 2024Al alloy [J]. Mater. Chem. Phys., 2010, 122: 200
doi: 10.1016/j.matchemphys.2010.02.034
8 Liang M C, Chen L, Zhao G Q, et al. Effects of solution treatment on the microstructure and mechanical properties of naturally aged EN AW 2024 Al alloy sheet [J]. J. Alloy. Compd., 2020, 824: 153943
doi: 10.1016/j.jallcom.2020.153943
9 Hutchinson C R, Ringer S P. Precipitation processes in Al-Cu-Mg alloys microalloyed with Si [J]. Metall. Mater. Trans., 2000, 31A: 2721
10 Li J Y, Chen S Y, Li F S, et al. Synergy effect of Si addition and pre-straining on microstructure and properties of Al-Cu-Mg alloys with a medium Cu/Mg ratio [J]. Mater. Sci. Eng., 2019, 767A: 138429
11 Li J C, Birbilis N, Buchheit R G. Electrochemical assessment of interfacial characteristics of intermetallic phases present in aluminium alloy 2024-T3 [J]. Corros. Sci., 2015, 101: 155
doi: 10.1016/j.corsci.2015.09.012
12 Kang J, Fu R D, Luan G H, et al. In-situ investigation on the pitting corrosion behavior of friction stir welded joint of AA2024-T3 aluminium alloy [J]. Corros. Sci., 2010, 52: 620
doi: 10.1016/j.corsci.2009.10.027
13 Wang X J, Ma X F, Zhang J Y, et al. Corrosion behavior of the friction stir weld of 2024 aluminum alloy in salt solution [J]. Corros. Prot., 2018, 39: 45
王希靖, 马晓飞, 张金银 等. 盐水环境中搅拌摩擦焊接2024铝合金的腐蚀行为 [J]. 腐蚀与防护, 2018, 39: 45
14 Bousquet E, Poulon-Quintin A, Puiggali M, et al. Relationship between microstructure, microhardness and corrosion sensitivity of an AA 2024-T3 friction stir welded joint [J]. Corros. Sci., 2011, 53: 3026
doi: 10.1016/j.corsci.2011.05.049
15 Queiroz F M, Magnani M, Costa I, et al. Investigation of the corrosion behaviour of AA 2024-T3 in low concentrated chloride media [J]. Corros. Sci., 2008, 50: 2646
doi: 10.1016/j.corsci.2008.06.041
16 Buchheit R G, Grant R P, Hlava P F, et al. Local dissolution phenomena associated with S phase (Al2CuMg) particles in aluminum alloy 2024‐T3 [J]. J. Electrochem. Soc., 1997, 144: 2621
doi: 10.1149/1.1837874
17 Zhang Y J, Liu H Y, Wang H B. Performance study on intergranular corrosion and exfoliation corrosion of friction stir welded joints of aluminium alloy [J]. Eng. Test, 2018, 58(3): 35
张亚娟, 刘海燕, 王红斌. 铝合金搅拌摩擦焊接头晶间腐蚀和剥落腐蚀性能研究 [J]. 工程与试验, 2018, 58(3): 35
18 Mu C. Intergranular corrosion of Al-Cu-Mg high-strength aluminum alloy [J]. Alum. Fabr., 2017, (6): 22
牟 春. Al-Cu-Mg系高强铝合金的晶间腐蚀 [J]. 铝加工, 2017, (6): 22
19 Grilli R, Baker M A, Castle J E, et al. Localized corrosion of a 2219 aluminium alloy exposed to a 3.5% NaCl solution [J]. Corros. Sci., 2010, 52: 2855
doi: 10.1016/j.corsci.2010.04.035
20 Blanc C, Lavelle B, Mankowski G. The role of precipitates enriched with copper on the susceptibility to pitting corrosion of the 2024 aluminium alloy [J]. Corros. Sci., 1997, 39: 495
doi: 10.1016/S0010-938X(97)86099-4
21 Li J F, Zheng Z Q, Ren W D. Function mechanism of secondary phase on localized corrosion of Al alloy [J]. Master. Rev., 2005, 19 (2): 81
李劲风, 郑子樵, 任文达. 第二相在铝合金局部腐蚀中的作用机制 [J]. 材料导报, 2005, 19(2): 81
22 Zhu D Q, van Ooij W J. Corrosion protection of AA 2024-T3 by bis-[3-(triethoxysilyl) propyl]tetrasulfide in neutral sodium chloride solution. Part 1: corrosion of AA 2024-T3 [J]. Corros. Sci., 2003, 45: 2163
doi: 10.1016/S0010-938X(03)00060-X
23 Kang J, Dong C L, Luan G H, et al. Corrosion mechanism on top surface of friction stir welded joint of 2024 aluminum alloy [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 282
康 举, 董春林, 栾国红 等. 2024铝合金搅拌摩擦焊焊缝表面腐蚀机理探索 [J]. 中国腐蚀与防护学报, 2011, 31: 282
24 Wang X J, Ma X F, Zhang L L. Effect of tool pin profile on microstructure and mechanical properties of 2024 aluminum alloy joint by friction stir welding [J]. Trans. China Weld. Inst., 2017, 38 (12): 99
王希靖, 马晓飞, 张亮亮. 搅拌头形状对2024铝合金接头组织及性能的影响 [J]. 焊接学报, 2017, 38(12): 99
25 Hu Z L, Wang X S, Yuan S J. Quantitative investigation of the tensile plastic deformation characteristic and microstructure for friction stir welded 2024 aluminum alloy [J]. Mater. Charact., 2012, 73: 114
doi: 10.1016/j.matchar.2012.08.007
26 Kang J, Fu R D, Luan G H. Quantitative investigation on aging phase behavior for 2024-T351 aluminum alloy during friction stir welding process [J]. Phys. Test. Chem. Anal., 2011, 47A: 199
康 举, 付瑞东, 栾国红. 定量研究2024-T351铝合金搅拌摩擦焊过程中的时效相行为 [J]. 理化检验-物理分册, 2011, 47: 199
27 Li N, Xu Y X, Li W Y, et al. Corrosion susceptibility and mechanical properties of friction-stir-welded AA2024-T3 joints [J]. Weld. World, 2022, 66: 951
doi: 10.1007/s40194-022-01282-9
28 do Vale N L, Torres E A, de Abreu Santos T F, et al. Effect of the energy input on the microstructure and mechanical behavior of AA2024-T351 joint produced by friction stir welding [J]. J. Braz. Soc. Mech. Sci. Eng., 2018, 40: 467
doi: 10.1007/s40430-018-1372-5
29 Bocchi S, Cabrini M, D’Urso G, et al. The influence of process parameters on mechanical properties and corrosion behavior of friction stir welded aluminum joints [J]. J. Manuf. Processes, 2018, 35: 1
doi: 10.1016/j.jmapro.2018.07.012
30 Entringer J, Meisnar M, Reimann M, et al. The effect of grain boundary precipitates on stress corrosion cracking in a bobbin tool friction stir welded Al-Cu-Li alloy [J]. Mater. Lett., 2019, 2: 100014
31 Jariyaboon M, Davenport A J, Ambat R, et al. The effect of welding parameters on the corrosion behaviour of friction stir welded AA2024-T351 [J]. Corros. Sci., 2007, 49: 877
doi: 10.1016/j.corsci.2006.05.038
32 Jariyaboon M, Davenport A J, Ambat R, et al. The effect of cryogenic CO2 cooling on corrosion behaviour of friction stir welded AA2024-T351 [J]. Corros. Eng., Sci. Technol., 2009, 44: 425
33 Sato Y S, Kokawa H, Kurihara S. Systematic examination of precipitation phenomena associated with hardness and corrosion properties in friction stir welded aluminium alloy 2024 [J]. Weld. World, 2011, 55: 39
34 Proton V, Alexis J, Andrieu E, et al. Influence of post-welding heat treatment on the corrosion behavior of a 2050-T3 aluminum-copper-lithium alloy friction stir welding joint [J]. J. Electrochem. Soc., 2011, 158: C139
doi: 10.1149/1.3562206
35 da Silva R M P, Izquierdo J, Milagre M X, et al. On the local corrosion behavior of coupled welded zones of the 2098-T351 Al-Cu-Li alloy produced by Friction Stir Welding (FSW): An amperometric and potentiometric microelectrochemical investigation [J]. Electrochimica Acta., 2021, 373: 137910
doi: 10.1016/j.electacta.2021.137910
36 Sinhmar S, Dwivedi D K. Investigation of mechanical and corrosion behavior of friction stir weld joint of aluminium alloy [J]. Mater. Today: Proc., 2019, 18: 4542
37 Donatus U, de Viveiros B V G, de Alencar M C, et al. Correlation between corrosion resistance, anodic hydrogen evolution and microhardness in friction stir weldment of AA2198 alloy [J]. Mater. Charact., 2018, 144: 99
doi: 10.1016/j.matchar.2018.07.004
38 Surekha K, Murty B S, Rao K P. Effect of processing parameters on the corrosion behaviour of friction stir processed AA 2219 aluminum alloy [J]. Solid State Sci., 2009, 11: 907
doi: 10.1016/j.solidstatesciences.2008.11.007
39 Xu W F, Ma J, Wang M, et al. Effect of cooling conditions on corrosion resistance of friction stir welded 2219-T62 aluminum alloy thick plate joint [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 1491
doi: 10.1016/S1003-6326(20)65313-4
40 Ralston K D, Birbilis N, Davies C H J. Revealing the relationship between grain size and corrosion rate of metals [J]. Scr. Mater., 2010, 63: 1201
doi: 10.1016/j.scriptamat.2010.08.035
41 Wang W, Li T Q, Wang K S, et al. Effect of travel speed on the stress corrosion behavior of friction stir welded 2024-T4 aluminum alloy [J]. J. Mater. Eng. Perform., 2016, 25: 1820
doi: 10.1007/s11665-016-1979-6
42 Naik D B, Rao C H V, Rao K S, et al. Optimization of friction stir welding parameters to improve corrosion resistance and hardness of AA2219 aluminum alloy welds [J]. Mater. Today: Proc., 2019, 15: 76
43 Sinhmar S, Dwivedi D K. Enhancement of mechanical properties and corrosion resistance of friction stir welded joint of AA2014 using water cooling [J]. Mater. Sci. Eng., 2017, 684A: 413
44 Kannusamy A S, Ramasamy R. Effect of post weld heat treatment and welding parameters on mechanical and corrosion characteristics of friction stir welded aluminium alloy AA2014-T6 [J]. Trans. Can. Soc. Mech. Eng., 2019, 43: 230
doi: 10.1139/tcsme-2018-0185
45 Zhao C Y, Zhang H, Shao T G, et al. Microstructure and corrosion behaviour of Al coating deposited by cold spraying onto FSW AA2219-T87 joint [J]. Corros. Eng., Sci. Technol., 2019, 54: 86
46 Li W Y, Jiang R R, Huang C J, et al. Effect of cold sprayed Al coating on mechanical property and corrosion behavior of friction stir welded AA2024-T351 joint [J]. Mater. Des., 2015, 65: 757
doi: 10.1016/j.matdes.2014.10.007
47 Iordachescu M, Valiente A, Caballero L, et al. Laser Shock Processing influence on local properties and overall tensile behavior of friction stir welded joints [J]. Surf. Coat. Technol., 2012, 206: 2422
doi: 10.1016/j.surfcoat.2011.10.044
48 Deng Y F, Zhang T M, Gan X W, et al. Effects of ultrasonic impact on microstructure and properties of friction stir welded aluminum alloy [J]. J. Netshape Form. Eng., 2019, 11 (5) : 78
邓云发, 张体明, 干贤威 等. 超声冲击对铝合金搅拌摩擦焊接头组织及性能的影响 [J]. 精密成形工程, 2019, 11 (5) : 78
49 Qian S H, Zhang T M, Chen Y H, et al. Effect of ultrasonic impact treatment on microstructure and corrosion behavior of friction stir welding joints of 2219 aluminum alloy [J]. J. Mater. Res. Technol., 2022, 18: 1631
doi: 10.1016/j.jmrt.2022.03.068
50 Ma S C, Zhao Y, Zou J S, et al. The effect of laser surface melting on microstructure and corrosion behavior of friction stir welded aluminum alloy 2219 [J]. Opt. Laser Technol., 2017, 96: 299
doi: 10.1016/j.optlastec.2017.05.028
51 Zhang H, Zhao C Y, Guo Q L, et al. Microstructure and corrosion behavior of friction stir welded al alloy coated by in situ shot-peening-assisted cold spray [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 172
doi: 10.1007/s40195-019-00966-4
52 Wang W, Li T, Wang K, et al. Effect of travel speed on the stress corrosion behavior of friction stir welded 2024-T4 aluminum alloy [J]. J. Mater. Eng. Perform., 2016, 25(5): 1820
doi: 10.1007/s11665-016-1979-6
53 Sutton M A, Reynolds A P, Yang B C, et al. Mode I fracture and microstructure for 2024-T3 friction stir welds [J]. Mater. Sci. Eng., 2003, 354A: 6
54 Kumar P V, Reddy G M, Rao K S. Microstructure and pitting corrosion of armor grade AA7075 aluminum alloy friction stir weld nugget zone-Effect of post weld heat treatment and addition of boron carbide [J]. Def. Technol., 2015, 11: 166
55 Liu W H, Liu W B, Bao A L. Improvement of corrosion resistance of friction stir welded joint of 7N01-T5 aluminum alloy by micro-arc oxidation [J]. Trans. China Weld. Inst., 2013, 34(1): 29
刘万辉, 刘文彬, 鲍爱莲. 微弧氧化处理改善7N01-T5铝合金搅拌摩擦焊接头的耐蚀性能 [J]. 焊接学报, 2013, 34(1): 29
56 Ou Y C, Chen M A. Corrosion resistance of the weld joint by friction stir welding on 6061 aluminum alloy after micro-arc oxidation [J]. Electropl. Finish., 2015, 34: 719
欧艳春, 陈明安. 6061铝合金搅拌摩擦焊焊缝微弧氧化涂层的耐蚀性 [J]. 电镀与涂饰, 2015, 34: 719
57 Rao K P, Ram G D J, Stucker B E. Improvement in corrosion resistance of friction stir welded aluminum alloys with micro arc oxidation coatings [J]. Scr. Mater., 2008, 58: 998
doi: 10.1016/j.scriptamat.2008.01.033
[1] LI Chunlin, SHI Hongwei, LIANG Guoping, LI Li, WANG Hao, WANG Wei, LIU Fuchun, HAN En-Hou. Corrosion Resistance and Aging Mechanism of Polyurethane Topcoat for High-speed Train[J]. 中国腐蚀与防护学报, 2023, 43(6): 1383-1391.
[2] LIAO Minxing, LIU Jun, DONG Baojun, LENG Xuesong, CAI Zelun, WU Junwei, HE Jianchao. Effect of Salt Spray Environment on Performance of 1Cr18Ni9Ti Brazed Joint[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[3] QU Weiwei, CHEN Zehao, PEI Yanling, LI Shusuo, WANG Fuhui. Spreading and Corrosion Behavior of CMAS Melt on Different Materials for Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[4] LIU Hao, GUO Xiaokai, WANG Wei, WU Liankui, CAO Fahe, SUN Qingqing. Effect of Ultrasonic Shot Peening on Microstructure and Properties of a 7075 Al-alloy Rod[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[5] LYU Zhengping, LI Yuan, LIU Xiaohang, CUI Zhongyu, CUI Hongzhi, WANG Xin, PANG Kun, LI Yizhou. Synergistic Inhibition Effect of Thiourea and Sodium Nitrate on Crevice Corrosion of 7075 Al-alloy in Acidic Sodium Chloride Solution[J]. 中国腐蚀与防护学报, 2023, 43(6): 1367-1374.
[6] XIAO Wentao, LIU Jing, PENG Jingjing, ZHANG Xian, WU Kaiming. Corrosion Resistance of Two Arc Spraying Coatings on EH36 Steel in Neutral Salt Spray Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
[7] HE Jing, YU Hang, FU Ziying, YUE Penghui. Effect of Water-soluble Corrosion Inhibitor on Corrosion Behavior of Q235 Pipeline Steel for Construction[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[8] LUO Weihua, WANG Haitao, YU Lin, XU Shi, LIU Zhaoxin, GUO Yu, WANG Tingyong. Effect of Zn Content on Electrochemical Properties of Al-Zn-In-Mg Sacrificial Anode Alloy[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
[9] LI Tianyu, WANG Weikang, LI Yangtao, BAO Tengfei, ZHAO Mengfan, SHEN Xinxin, NI Lei, MA Qinglei, TIAN Huiwen. Corrosion Failure Mechanism of Ultra-high-performance Concretes Prepared with Sea Water and Sea Sand in an Artificial Sea Water Containing Sulfate[J]. 中国腐蚀与防护学报, 2023, 43(5): 1101-1110.
[10] REN Huangwei, LIAO Bokai, CUI Linjing, XIANG Tengfei. Effect of Liquid Film Thickness on Corrosion Behavior of Solid Slippery Surface under Thin Liquid Film[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[11] XIAO Meng, WANG Qinying, ZHANG Xingshou, XI Yuchen, BAI Shulin, DONG Lijin, ZHANG Jin, YANG Junjie. Effect of Laser Quenching on Microstructure, Corrosion and Wear Behavior of AISI 4130 Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[12] PENG Wenshan, DUAN Tigang, MA Li, XIN Yonglei, CHENG Wenhua, LIU Shaotong. Corrosion Behavior of ZAlSi7Mg Al-alloy in Deep-sea Environments in Western Pacific Ocean and South China Sea[J]. 中国腐蚀与防护学报, 2023, 43(3): 516-524.
[13] XIA Xiaojian, WAN Xinyuan, CHEN Yunxiang, HAN Jiceng, CHEN Yiyang, YAN Kanghua, LIN Deyuan, CHEN Tianpeng, ZUO Xiaomei, SUN Baozhuang, CHENG Xuequn. Effect of Heat Treatments on Corrosion Behavior of 3Cr Low Carbon Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 656-662.
[14] WANG Honglun, YANG Hua, CAI Hui, LI Bowen. Corrosion Behavior of Q235 Steel by Outdoor Exposure and under Shelter in Atmosphere of Hainan Coastal[J]. 中国腐蚀与防护学报, 2023, 43(3): 677-682.
[15] HUANG Jiazhen, HUANG Tao, YANG Lijing, JI Dengping, DING He, WEI Yi, SONG Zhenlun. Electrochemical Properties and Offshore Corrosion Behavior of SAF 2304 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
No Suggested Reading articles found!