Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (6): 1165-1177    DOI: 10.11902/1005.4537.2022.326
Current Issue | Archive | Adv Search |
Corrosion Behavior and Sealing Technologies of Bronze
ZHAO Lu1, LI Qian1,2,3(), ZHAO Tianliang1,4()
1.School of Materials Science and Engineering, State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200444, China
2.Institute for the Conservation of Cultural Heritage, Shanghai University, Shanghai 200444, China
3.School of Materials Science and Engineering & National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
4.Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, Wuhan 430081, China
Cite this article: 

ZHAO Lu, LI Qian, ZHAO Tianliang. Corrosion Behavior and Sealing Technologies of Bronze. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1165-1177.

Download:  HTML  PDF(9995KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Bronze relics are precious historical and cultural heritage of mankind, as the bearer of important historical information about the human civilization, but their corrosion-prone characteristics make them face a serious threat of rust and eventually fester. Studying the corrosion and destruction behavior of bronzes and correspondingly adopting effective sealing technologies can not only protect the long-term inheritance of bronzes, but also retain their historical research and artistic appreciation value. At present, the research on the corrosion behavior and sealing technologies of bronzes is still lacking in system. There are still many scientific and technical problems that need to be solved urgently in the effect of multi-factor synergistic competition on the evolution characteristics of bronze rust layers in the state of being buried or stored, the diagnostic methods and quantitative standards of bronze diseases, the sealing technologies of bronzes and the construction of databases related to bronze corrosion and sealing. This paper focuses on the key scientific issues in the whole process of bronze excavation, extraction, storage and protection, reviews the current main research results in the field of bronze corrosion behavior and sealing technologies, and the corrosion mechanism of bronzes. The influences of inherent factors related with bronze such as chemical composition and microstructure, as well as the external environmental factors such as Cl- concentration, humidity and temperature on the corrosion behavior of bronze are outlined. The existing methods for the diagnosis and classification of bronzes are analyzed, and the existing temporary and long-term sealing technologies for bronzes are summarized. At last, the future development trend of bronze corrosion and sealing is prospected in this paper, and we hope to guide and promote the development of bronze corrosion and sealing technology by constructing a comprehensive standard database of environment-bronze-diseases-sealing technologies.

Key words:  bronzes      corrosion mechanism      influence factors      disease diagnosis      sealing technologies     
Received:  21 October 2022      32134.14.1005.4537.2022.326
ZTFLH:  TB304  
Fund: National Key Research and Development Project of China(2019YFC1520104);Sichuan Science and Technology Program(2022YFS0558)
Corresponding Authors:  LI Qian, E-mail: shuliqian@shu.edu.cn;
ZHAO Tianliang, E-mail: ustb_tlzhao@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.326     OR     https://www.jcscp.org/EN/Y2023/V43/I6/1165

Fig.1  Cross sectional image of pitting corrosion of bronze[11]
Fig.2  Cross sectional images of Cu4Sn/Cu6Sn (a) and Cu metal (b) exposed at Brest for 5 a as well as the elemental mapping (c-f) corresponding to Fig.2a[17]
Fig.3  SEM observation of as-prepared sample (a) and samples exposed to visible light (b) and exposed to UV light after 6 d of immersion in simulated natural edaphic aqueous solution (c)[27]
Fig.4  2D and 3D reconstructed CT images in the inner surface of the falcon coffin[52]
Fig.5  The neutron radiography of the flanged axe from Zalaszabar (a), PGAA measurement area (b), area of former destructive sampling (c), the 3D surface plot of the panel (d) [53]
GradeClassificationDescription
Freshly polished bronze
1Slight discolorationa. Light orange
b. Dark orange
2Moderate discolorationa. Fuchsia
b. Light purple
c. Multi-colored with lavender blue or silver, or both, and covered with fuchsia
d. Silver
e. Brass or golden yellow
3Severe discolorationa. Multi-colored magenta overlaid on brass
b. Multicolor with red and green display (malachite green), but not gray
4Corrosiona. Transparent black, dark gray or brown with only malachite green
b. Graphite black or matt black
c. Shiny black or jet black shiny black
Table 1  Standard color plate classification for copper corrosion
Fig.6  Structural formula of menthol (a) and super depth of field 3D video microscope photos of painted paint leather before and after menthol treatment: before treatment (b), crystallization of menthol on painted leather upon volatilization (c), crystallization growth (d), after menthol volatilized completely (e)[56]
1 Wang X. Research and discussion on the corrosion mechanism of Sanxingdui bronze "powder rust" [J]. Sichuan Cult. Relics, 2002, (3): 83
王 煊. 三星堆青铜器“酥粉锈”腐蚀机理的研究与探讨 [J]. 四川文物, 2002, (3): 83
2 Ma R Y, Wang C G, Mu X, et al. Influence of hydrostatic pressure on corrosion behavior of ultrapure Fe [J]. Acta Metall. Sin., 2019, 55: 859
马荣耀, 王长罡, 穆 鑫 等. 静水压力对超纯Fe腐蚀行为的影响 [J]. 金属学报, 2019, 55: 859
doi: 10.11900/0412.1961.2019.00044
3 Qing Y C, Yang Z W, Xian J, et al. Corrosion behavior of Q235 steel under the interaction of alternating current and microorganisms [J]. Acta Metall. Sin., 2016, 52: 1142
doi: 10.11900/0412.1961.2016.00030
卿永长, 杨志炜, 鲜 俊 等. 交流电和微生物共同作用下Q235钢的腐蚀行为 [J]. 金属学报, 2016, 52: 1142
doi: 10.11900/0412.1961.2016.00030
4 Tan J B, Wang X, Wu X Q, et al. Corrosion fatigue behavior of 316LN stainless steel hollow specimen in high-temperature pressurized water [J]. Acta Metall. Sin., 2021, 57: 309
doi: 10.11900/0412.1961.2020.00134
谭季波, 王 翔, 吴欣强 等. 316LN不锈钢管状试样高温高压水的腐蚀疲劳行为 [J]. 金属学报, 2021, 57: 309
doi: 10.11900/0412.1961.2020.00134
5 Zeng R C, Cui L Y, Ke W. Biomedical magnesium alloys: composition, microstructure and corrosion [J]. Acta Metall. Sin., 2018, 54: 1215
曾荣昌, 崔蓝月, 柯 伟. 医用镁合金: 成分、组织及腐蚀 [J]. 金属学报, 2018, 54: 1215
6 Liu J H, Song Y W, Shan D Y, et al. Comparative study on corrosion behavior of cast and forged Mg-5Y-7Gd-1Nd-0.5Zr alloys [J]. Acta Metall. Sin., 2018, 54: 1141
doi: 10.11900/0412.1961.2017.00484
刘金辉, 宋影伟, 单大勇 等. 铸态和锻造态Mg-5Y-7Gd-1Nd-0.5Zr合金腐蚀行为对比研究 [J]. 金属学报, 2018, 54: 1141
doi: 10.11900/0412.1961.2017.00484
7 Chen X C, Wang J, Chen D R, et al. Effect of Na on early atmospheric corrosion of Al [J]. Acta Metall. Sin., 2019, 55: 529
doi: 10.11900/0412.1961.2018.00280
陈星晨, 王 杰, 陈德任 等. Na对于Al早期大气腐蚀的影响 [J]. 金属学报, 2019, 55: 529
doi: 10.11900/0412.1961.2018.00280
8 Shen Y Y, Dong Y H, Dong L H, et al. Corrosion inhibition effect of microorganism on 5754 Al alloy in seawater [J]. Acta Metall. Sin., 2020, 56: 1681
doi: 10.11900/0412.1961.2020.00129
申媛媛, 董耀华, 董丽华 等. 微生物抑制5754铝合金的海水腐蚀行为 [J]. 金属学报, 2020, 56: 1681
doi: 10.11900/0412.1961.2020.00129
9 Lu S L, Li H Y. Protection of corroded bronze [A]. Cultural Relic Protection Technology [C]. Beijing, 2010: 220
陆寿麟, 李化元. 腐蚀青铜器的保护 [A]. 文物保护技术 [C]. 北京, 2010: 220
10 Wang H Z, Song D S, Zhu H, et al. The methodology study on the rust mechanism of brass wares [J]. Hum. Cult. Herit. Preserv., 2003: 94
王蕙贞, 宋迪生, 朱 虹 等. 青铜文物腐蚀机理及保护方法研究 [J]. 人类文化遗产保护, 2003: 94
11 Yuan X H, Hou X M. The scientific analysis of bronze cultural relics and the corrosion mechanism and protection methods [J] Archaeol. Luoyang, 2013, (3): 83
袁晓红, 侯秀敏. 青铜文物的科学分析与腐蚀机理及保护方法略述 [J]. 洛阳考古, 2013, (3): 83
12 Lucey V F. Developments leading to the present understanding of the mechanism of pitting corrosion of copper [J]. Br. Corros. J., 1972, 7: 36
doi: 10.1179/000705972798323332
13 de Oliveira F J R, Lago D C B, Senna L F, et al. Study of patina formation on bronze specimens [J]. Mater. Chem. Phys., 2009, 115: 761
doi: 10.1016/j.matchemphys.2009.02.035
14 Zhu H F. Application of Benzotriazole as an inhibitor to antiquities preservation [J]. Corros. Sci. Prot. Technol., 1999, 11 (4): 255
祝鸿范. BTA缓蚀剂在文物保护中的应用 [J]. 腐蚀科学与防护技术, 1999, 11 (4): 255
15 Cheng D R, Zhao M R, Liu C, et al. Further research into corrosion machanism of “powdery copper rust” [J]. J. Northwest Univ. (Nat. Sci. Ed.), 1989, 19(1): 30
程德润, 赵明仁, 刘 成 等. 古代青铜器“粉状锈”锈蚀机理新探 [J]. 西北大学学报 (自然科学版), 1989, 19(1): 30
16 Zhu H F. Relationship between the production of the bronze disease and the potting corrosion [J]. Sci. Conserv. Archaeol., 1998, 10(1): 7
祝鸿范. 青铜病的发生与小孔腐蚀的关系 [J]. 文物保护与考古科学, 1998, 10(1): 7
17 Gao Y. Corrosive destruction of ancient bronzes [J]. J. Natl. Muse. Chin., 1979: 121
高 英. 古代青铜器的腐蚀性破坏 [J]. 中国历史博物馆馆刊, 1979: 121
18 Chang T, Herting G, Goidanich S, et al. The role of Sn on the long-term atmospheric corrosion of binary Cu-Sn bronze alloys in architecture [J]. Corros. Sci., 2019, 149: 54
doi: 10.1016/j.corsci.2019.01.002
19 Sun F L, Li X G, Lu L, et al. Corrosion behavior of copper alloys in deep ocean environment of south China sea [J]. Acta Metall. Sin., 2013, 49: 1211
doi: 10.3724/SP.J.1037.2013.00142
孙飞龙, 李晓刚, 卢 琳 等. 铜合金在中国南海深海环境下的腐蚀行为研究 [J]. 金属学报, 2013, 49: 1211
doi: 10.3724/SP.J.1037.2013.00142
20 Muller J, Laïk B, Guillot I. α-CuSn bronzes in sulphate medium: Influence of the tin content on corrosion processes [J]. Corros. Sci., 2013, 77: 46
doi: 10.1016/j.corsci.2013.07.025
21 Scott D A, Dodd L S. Examination, conservation and analysis of a gilded Egyptian bronze Osiris [J]. J. Cult. Heritage, 2002, 3: 333
doi: 10.1016/S1296-2074(02)01238-4
22 Zhang P Y. Conservational restoration of a bronze sword with ultrahigh lead content of the warring states period collected in Zhangqiu Museum [J]. J. Natl. Muse. Chin., 2019, (5): 135
张鹏宇. 山东章丘博物馆藏战国超高铅青铜剑的保护修复研究 [J]. 中国国家博物馆馆刊, 2019, (5): 135
23 Quaranta M, Catelli E, Prati S, et al. Chinese archaeological artefacts: Microstructure and corrosion behaviour of high-leaded bronzes [J]. J. Cult. Heritage, 2014, 15: 283
doi: 10.1016/j.culher.2013.07.007
24 Liang Z P, Jiang K X, Zhang T A. Corrosion behaviour of lead bronze from the Western Zhou Dynasty in an archaeological-soil medium [J]. Corros. Sci., 2021, 191: 109721
doi: 10.1016/j.corsci.2021.109721
25 Sadawy M M, Ghanem M, Zohdy K M. Corrosion and electrochemical behavior of leaded-bronze alloys in 3.5% NaCl solution [J]. Am. J. Chem. Appl., 2014, 1: 1
doi: 10.11648/j.ajac.20130101.11
26 Fan X P, Zhao X W, Wen X H. Raman Spectrum Analysis of corrosion products on the bronze earcup [J]. Chin. J. Light. Scatt., 2017, 29: 148
doi: 10.13883/j.issn1004-5929.201702010
凡小盼, 赵雄伟, 温小华. 一青铜耳杯锈蚀的拉曼光谱分析 [J]. 光散射学报, 2017, 29: 148
doi: 10.13883/j.issn1004-5929.201702010
27 Wu J X, Wang J L. The effects of UV and visible light on the corrosion of bronze covered with an oxide film in aqueous solution [J]. Corros. Sci., 2019, 154: 144
doi: 10.1016/j.corsci.2019.01.009
28 Xu X Y, Lv Y T, Hu M, et al. Influence of second phases on fatigue crack growth behavior of nickel aluminum bronze [J]. Int. J. Fatigue, 2016, 82: 579
doi: 10.1016/j.ijfatigue.2015.09.014
29 Liu Y W, Zhao H T, Wang Z Y. Initial corrosion behavior of carbon steel and weathering steel in Nansha marine atmosphere [J]. Acta Metall. Sin., 2020, 56: 1247
刘雨薇, 赵洪涛, 王振尧. 碳钢和耐候钢在南沙海洋大气环境中的初期腐蚀行为 [J]. 金属学报, 2020, 56: 1247
30 Song X X, Huang S P, Wang C, et al. The initial corrosion behavior of carbon steel exposed to the coastal-industrial atmosphere in Hongyanhe [J]. Acta Metall. Sin., 2020, 56: 1355
宋学鑫, 黄松鹏, 汪 川 等. 碳钢在红沿河海洋工业大气环境中的初期腐蚀行为 [J]. 金属学报, 2020, 56: 1355
31 Ma X Z, Meng L D, Cao X K, et al. Influence of co-deposition of pollutant particulates ammonium sulfate and sodium chloride on atmospheric corrosion of copper of printed circuit board [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 540
马小泽, 孟令东, 曹祥康 等. 大气污染物硫酸铵和氯化钠混合盐粒沉降对电路板铜大气腐蚀的加速机制 [J]. 中国腐蚀与防护学报, 2022, 42: 540
doi: 10.11902/1005.4537.2021.138
32 Sabbaghzadeh B, Parvizi R, Davoodi A, et al. Corrosion evaluation of multi-pass welded nickel-aluminum bronze alloy in 3.5% sodium chloride solution: A restorative application of gas tungsten arc welding process [J]. Mater. Des., 2014, 58: 346
doi: 10.1016/j.matdes.2014.02.019
33 Fazal M A, Haseeb A S M A, Masjuki H H. Corrosion mechanism of copper in palm biodiesel [J]. Corros. Sci., 2013, 67: 50
doi: 10.1016/j.corsci.2012.10.006
34 Fan C Z, Hu K L, Wang C S, et al. A study on the process of bronze corrosion by the methods of IR-Reflection and IR-Photoacoustics Spectra [J]. Chem. J. Chin. Univ., 1992, 13: 31
范崇正, 胡克良, 王昌燧 等. 红外反射及红外-光声光谱法对青铜生锈过程的研究 [J]. 高等学校化学学报, 1992, 13: 31
35 Qi D M, Cheng R Y, Du X Q, et al. Review on atmospheric corrosion of copper and copper alloys [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 389
齐东梅, 成若义, 杜小青 等. Cu及其合金的大气腐蚀研究现状 [J]. 中国腐蚀与防护学报, 2014, 34: 389
doi: 10.11902/1005.4537.2013.174
36 Watanabe M, Higashi Y, Tanaka T. Differences between corrosion products formed on copper exposed in Tokyo in summer and winter [J]. Corros. Sci., 2003, 45: 1439
doi: 10.1016/S0010-938X(02)00245-7
37 Li C L, Ma Y T, Li Y, et al. EIS monitoring study of atmospheric corrosion under variable relative humidity [J]. Corros. Sci., 2010, 52: 3677
doi: 10.1016/j.corsci.2010.07.018
38 Ministry of Construction of the People's Republic of China, Ministry of Culture of the People's Republic of China. Museum architectural design code [S]. Beijing: China Construction Industry Press, 1991
中华人民共和国建设部, 中华人民共和国文化部. 博物馆建筑设计规范 [S]. 北京: 中国建筑工业出版社, 1991
39 MacLeod I D. Identification of corrosion products on non-ferrous metal artifacts recovered from shipwrecks [J]. Stud. Conserv., 1991, 36: 222
40 Luo Y, Gai T W, Jiang D B. The effect of the biological factor for the bronze disease [J]. Sci. Conserv. Archaeol., 1997, 9 (2): 16
罗 毅, 盖廷武, 蒋德宾. 青铜粉状锈中生物因素的影响 [J]. 文物保护与考古科学, 1997, 9 (2): 16
41 Cheng D R, Wang L Q, Dang G C. Effects of environmental change on the corrosion of historical bronze relics [J]. Environ. Sci., 1995, 16 (2): 53
doi: 10.1021/es00095a013
程德润, 王丽琴, 党高潮. 环境对青铜文物锈蚀的影响 [J]. 环境科学, 1995, 16 (2): 53
42 Zhang X R, Hao X B. Corrosion of microorganisms on metal cultural relics [J]. Rel. Museol., 1998, (2): 91
张孝绒, 郝新本. 微生物对金属文物的腐蚀作用 [J]. 文博, 1998, (2): 91
43 Feng H, Li H B, Lu P C, et al. Investigation on microbiologically influenced corrosion behavior of CrCoNi medium-entropy alloy by Pseudomonas Aeruginosa [J]. Acta Metall. Sin., 2019, 55: 1457
冯 浩, 李花兵, 路鹏冲 等. 铜绿假单胞菌对CrCoNi中熵合金微生物腐蚀行为的影响 [J]. 金属学报, 2019, 55: 1457
44 Liu H Y, Zhang X Q, Teng Y X, et al. Corrosion resistance and antifouling performance of copper-bearing low-carbon steel in marine environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 679
刘宏宇, 张喜庆, 滕莹雪 等. 含铜低碳钢在海洋环境下的耐蚀和防污性能的研究 [J]. 中国腐蚀与防护学报, 2021, 41: 679
doi: 10.11902/1005.4537.2020.242
45 Yang K, Shi X B, Yan W, et al. Novel Cu-bearing pipeline steels: A new strategy to improve resistance to microbiologically influenced corrosion for pipeline steels [J]. Acta Metall. Sin., 2020, 56: 385
doi: 10.11900/0412.1961.2019.00372
杨 柯, 史显波, 严 伟 等. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径 [J]. 金属学报, 2020, 56: 385
46 Wang J M, Yang H D, Du M, et al. Corrosion of B10 Cu-Ni alloy in seawater polluted by high concentration of NH 4 + [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 609
王家明, 杨昊东, 杜 敏 等. B10铜镍合金在高浓度NH 4 + 污染海水中腐蚀研究 [J]. 中国腐蚀与防护学报, 2021, 41: 609
doi: 10.11902/1005.4537.2020.222
47 Sasaki T, Itoh J, Horiguchi Y, et al. Quantitative determination of corrosion products and adsorbed water on copper in humid air containing SO2 by IR-RAS measurements [J]. Corros. Sci., 2006, 48: 4339
doi: 10.1016/j.corsci.2006.03.016
48 Drioli E, Gagliardi R, Donato L, et al. CoPVDF membranes for protection of cultural heritages [J]. J. Membr. Sci., 1995, 102: 131
doi: 10.1016/0376-7388(94)00272-Z
49 Ma Y. Analysis of repair and protection methods of bronze [J]. Ident. Appre. Cult. Relics, 2019, (11): 94
马 云. 青铜器的修复与保护方法解析 [J]. 文物鉴定与鉴赏, 2019, (11): 94
50 Torrisi L, Caridi F, Borrielli A, et al. LAMQS and XRF analyses of ancient Egyptian bronze coins [J]. Radiat. Effects Defects Solids., 2010, 165: 626
doi: 10.1080/10420151003729508
51 Ferretti M, Miazzo L, Moioli P. The application of a non-destructive XRF method to identify different alloys in the bronze statue of the Capitoline Horse [J]. Stud. Conserv., 1997, 42: 241
52 Maher M A. X-ray computed tomography of a late period falcon bronze coffin [J]. Radiat. Phys. Chem., 2020, 166: 108475
doi: 10.1016/j.radphyschem.2019.108475
53 Kiss V, Fischl K P, Horváth E, et al. Non-destructive analyses of bronze artefacts from Bronze Age Hungary using neutron-based methods [J]. J. Anal. At. Spectrom., 2015, 30: 685
doi: 10.1039/C4JA00377B
54 Hu J X, Ding G R. Reinforcement and repair of ancient bronze after corrosion [J]. Jianghan Archaeol., 1987, (3): 92
胡家喜, 丁国荣. 古代青铜器腐蚀后的加固和修复 [J]. 江汉考古, 1987, (3): 92
55 Wang C Y, Hui N, Rong B, et al. Effects of menthol and its derivatives on the surface of painted relics [J]. Wenbo, 2013, (4): 75
王春燕, 惠 娜, 容 波 等. 薄荷醇及其衍生物对彩绘遗迹表面的影响 [J]. 文博, 2013, (4): 75
56 Han X N, Rong B, Zhang B J, et al. A study on the safety of using menthol to extract polychrome relics at the Qinshihuang's terracotta army excavation site [J]. Sci. Conserv. Archaeol., 2017, 29(2): 1
韩向娜, 容 波, 张秉坚 等. 薄荷醇提取秦俑坑出土彩绘遗迹的性能评估研究 [J]. 文物保护与考古科学, 2017, 29(2): 1
57 Yu J Q, Zhang B J, Han X N, et al. Comparative study of volatile solid materials used in archaeological excavations having moist environments [J]. Sci. Conserv. Archaeol., 2018, 30(2): 20
俞剑清, 张秉坚, 韩向娜 等. 潮湿环境考古发掘现场挥发性固型材料的比较研究 [J]. 文物保护与考古科学, 2018, 30(2): 20
58 Wang H, Chen L, Zhang R T, et al. The evaluation of menthol on cutaneous safety [J]. Pharmacol. Clinics. Chin. Mater. Med., 2008, 24(3): 32
王 晖, 陈 丽, 张瑞涛 等. 薄荷醇的皮肤安全性评价 [J]. 中药药理与临床, 2008, 24(3): 32
59 Li N. My View on the corrosion and protection of bronze cultural relics [J]. Chin. Natl. Expo., 2019, (2): 218
李 楠. 青铜文物腐蚀与保护措施之我见 [J]. 中国民族博览, 2019, (2): 218
60 Liu Y L, Xiong J P, Zuo Y, et al. Research on cleaning mechanism and modification technology of bronze cultural relics with sodium sesquicarbonate aqueous solution [A]. The 13th National Corrosion Inhibitor Academic Discussion and Application Technology Experience Exchange Conference [C]. Kunming, 2004: 432
刘育玲, 熊金平, 左 禹 等. 青铜文物倍半碳酸钠水溶液清洗机理及改性技术研究 [A]. 第十三届全国缓蚀剂学术讨论会论文集 [C]. 昆明, 2004: 432
61 Yang X G, Liu P, Ye L, et al. Using hydrogels to remove rust from gilt bronzes in the Chongqing area [J]. Sci. Conserv. Archaeol., 2019, 31(1): 35
杨小刚, 刘 屏, 叶 琳 等. 基于水凝胶方法的重庆地区鎏金青铜器除锈新技术研究 [J]. 文物保护与考古科学, 2019, 31(1): 35
62 Zheng J. A brief discussion on the application of acrylic resin in the field of cultural relics protection [J]. J. Chin. Antiquity, 2018, (6): 74
郑 军. 浅议丙烯酸树脂在文物保护领域中的应用 [J]. 文物世界, 2018, (6): 74
63 Lian Y B, Zhang Q Z, Han C H, et al. Inhibition behavior of a nano-corrosion inhibitor capsule prepared from MOFs and BTA for copper [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1058
连宇博, 张庆祝, 韩创辉 等. 一种基于MOFs与BTA的纳米缓蚀胶囊对铜的缓蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1058
doi: 10.11902/1005.4537.2021.288
64 Huang S P, Peng C, Cao G W, et al. Corrosion behavior of copper-nickel alloys protected by BTA in simulated urban atmosphere [J]. Acta Metall. Sin., 2021, 57: 317
黄松鹏, 彭 灿, 曹公望 等. 受BTA保护的白铜在模拟工业大气环境中的腐蚀行为 [J]. 金属学报, 2021, 57: 317
65 Fu H T, Li Y, Wei W J, et al. Bronze artifacts preservation and application of AMT [J]. Corros. Sci. Prot. Technol., 2002, 14: 35
付海涛, 李 瑛, 魏无际 等. 古代青铜文物保护研究现状及AMT的应用 [J]. 腐蚀科学与防护技术, 2002, 14: 35
66 Hu J X. Repair and protection of "harmful rust" bronzes [J]. Cult. Relics Restor. Res., 2007: 26
胡家喜. “有害锈”青铜器的修复保护 [J]. 文物修复与研究, 2007: 26
67 Bescher E, Mackenzie J D. Sol-gel coatings for the protection of brass and bronze [J]. J. Sol-Gel Sci. Technol., 2003, 26: 1223
doi: 10.1023/A:1020724605851
68 Zhang M Z, Guan C S, Wang W Q. Application of silane coupling agents in pretreatment of metal surface [J]. Corros. Sci. Prot. Technol., 2001, 13: 96
张明宗, 管从胜, 王威强. 有机硅烷偶联剂在金属表面预处理中的应用 [J]. 腐蚀科学与防护技术, 2001, 13: 96
69 Bierwagen G, Shedlosky T J, Stanek K. Developing and testing a new generation of protective coatings for outdoor bronze sculpture [J]. Prog. Org. Coat., 2003, 48: 289
doi: 10.1016/j.porgcoat.2003.07.004
70 Liu D, He G H, Sun J, et al. Preparation of SiO2/epoxy resin hybrid materials by sol-gel process [J]. Thermosetting Resin, 2008, 23 (4): 19
刘 丹, 贺高红, 孙 杰 等. 溶胶-凝胶法制备纳米SiO2/环氧树脂杂化材料 [J]. 热固性树脂, 2008, 23 (4): 19
71 Zhou H, Wang S L, Liu X F, et al. Hybrid corrosion inhibitor for anti-corrosion and protection of bronze relics [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 517
周 浩, 王胜利, 刘雪峰 等. 新型复合缓蚀剂对青铜文物的防腐蚀研究 [J]. 中国腐蚀与防护学报, 2021, 41: 517
72 Jin T, Wang C S, Chen Z W, et al. Duplication of glassy black SnO2 film on bronze and its protective effect [J]. J. Chin. Soc. Corros. Prot., 1997, 17: 111
金 韬, 王昌燧, 陈志文 等. 青铜表面SnO2保护膜的制备及其防护性能研究 [J]. 中国腐蚀与防护学报, 1997, 17: 111
[1] WANG Hua, WANG Yingjie, LIU Enze. Hot Corrosion Behavior of New Type Co-Al-W Superalloys with Different Ni Contents[J]. 中国腐蚀与防护学报, 2023, 43(6): 1419-1426.
[2] ZHOU Hao, YOU Shijie, WANG Shengli. Corrosion Behavior and Corrosion Inhibitor for Copper Artifacts in CO2 Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
[3] WANG Jin, NING Peidong, LIU Qianqian, CHEN Nana, ZHANG Xin, XIAO Kui. Corrosion Behavior of Galvanized Steel in a Simulated Marine Atmospheric Environment[J]. 中国腐蚀与防护学报, 2023, 43(3): 578-586.
[4] LIU Mingming, YANG Xiaobing, CHEN Xiaoqi, WANG Zhengbin, ZHENG Yugui, HE Chunlin. Research Progress on Corrosion Behavior of Metallic Materials in Acetic Acid Environment[J]. 中国腐蚀与防护学报, 2023, 43(1): 13-21.
[5] GAO Qiuying, XU Yixuan, HU Pengwei, YAO Tianwan, QI Wenlong. Corrosion and Protection Technique of Regeneration Tower Bottom Reboiler in Natural Gas Purification Unit[J]. 中国腐蚀与防护学报, 2022, 42(4): 699-704.
[6] LIU Yichao, ZHONG Xiankang, HU Junying. Characteristics and Mechanisms of Elemental Sulfur Induced Corrosion of Sulfur-resistant Steels in Wet Flow CO2 Environment[J]. 中国腐蚀与防护学报, 2022, 42(3): 369-377.
[7] CUI Zhongyu, GE Feng, WANG Xin. Corrosion Mechanism of Materials in Three Typical Harsh Marine Atmospheric Environments[J]. 中国腐蚀与防护学报, 2022, 42(3): 403-409.
[8] ZHANG Jian, HUANG Jin, XU Jiapeng, LUO Guoqiang, SHEN Qiang. Corrosion Behavior of Molybdenum in LiF-LiCl-LiBr-Li Molten Salt at 500 ℃[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.
[9] LI Chengyuan, CHEN Xu, HE Chuan, LI Hongjin, PAN Xin. Alternating Current Induced Corrosion of Buried Metal Pipeline: A Review[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[10] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[11] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[12] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[13] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[14] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[15] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
No Suggested Reading articles found!