Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (3): 578-586    DOI: 10.11902/1005.4537.2022.151
Current Issue | Archive | Adv Search |
Corrosion Behavior of Galvanized Steel in a Simulated Marine Atmospheric Environment
WANG Jin1, NING Peidong1, LIU Qianqian2, CHEN Nana2, ZHANG Xin3, XIAO Kui2()
1.Research Institute, JISCO Hongxing Iron and Steel Co. Ltd., Jiayuguan 735100, China
2.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
3.Testing Center of University of Science and Technology Beijing Co. Ltd., Beijing 100083, China
Download:  HTML  PDF(23341KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of hot-dip galvanized steel after various test cycles in simulate marine atmospheric environment was assessed by mass loss method, 3D confocal microscope, electrochemical impedance spectroscope (EIS), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray diffractometer (XRD) and X-ray photoelectron spectroscope (XPS). The results show that the corrosion rate of the steel samples was higher at the beginning of the experiment, then decreased at 56 d, and increased again at 104 d, which might be related to the formation of corrosion products. After being tested for 56 d, the steel suffered form mainly uniform corrosion, the main corrosion products were hydroxyzinc chloride (Zn5(OH)8Cl2·H2O), zinc oxide (ZnO) and basic zinc carbonate (Zn5(OH)6(CO3)2). In the simulated marine atmospheric environment, the corrosion resistance of the hot-dip galvanized coating failed quickly. Whilst, the corrosion rate has been accelerating until the formation of a relatively complete corrosion product film on the existed damaged areas, hence, the corrosion product film has a certain inhibitory effect on the corrosion of the coating.

Key words:  hot-dip galvanized steel      marine atmospheric environment      indoor acceleration test      corrosion mechanism     
Received:  14 May 2022      32134.14.1005.4537.2022.151
ZTFLH:  TG174  
Fund: National Materials Corrosion and Protection Date Center
Corresponding Authors:  XIAO Kui, E-mail: xiaokui@ustb.edu.cn

Cite this article: 

WANG Jin, NING Peidong, LIU Qianqian, CHEN Nana, ZHANG Xin, XIAO Kui. Corrosion Behavior of Galvanized Steel in a Simulated Marine Atmospheric Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 578-586.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.151     OR     https://www.jcscp.org/EN/Y2023/V43/I3/578

Time / dMass loss / g·m-2Average corrosion depth / μmAverage corrosion rate / μm·a-1
2414.6312.04931.165
5624.6683.45522.519
10440.6885.69920.000
12048.6576.82020.743
Table 1  Corrosion mass loss data of GI plate in simulated marine atmospheric environment
Fig.1  Corrosion dynamics correlation curves of GI plate in simulated marine atmospheric environment: (a) thickness loss and average corrosion rate curves, (b) instantaneous corrosion rate
Fig.2  XRD spectra of GI panels after different periods of accelerated corrosion test in simulated marine atmospheric environment
Fig.3  XPS spectra of GI panels after different cycles of accelerated corrosion test in simulated marine atmospheric environment: (a) Zn 2p3/2, (b) C 1s, (c) O 1s, (d) Cl 2p
Fig.4  Macroscopic corrosion morphologies of GI panels after 0 d (a), 24 d (b), 40 d (c), 56 d (d), 72 d (e), 88 d (f), 104 d (g) and 120 d (h) of accelerated corrosion test in simulated marine atmospheric environment
Fig.5  3D confocal morphologies of GI panels after derusting in 24 d (a), 56 d (b), 104 d (c) and 120 d (d) in simulated marine atmospheric environment
Fig.6  Corrosion morphologies of GI panels after 24 d (a1, a2), 56 d (b1, b2), 104 d (c1, c2) and 120 d (d1, d2) in simulated marine atmospheric environment
PositionC KO KZn KCl KFe KP K
a22.0827.5950.33---
b-39.6646.2514.09--
c39.4025.759.485.8716.123.39
d-43.8517.841.4236.89-
e48.9823.712.781.1423.39-
f-38.676.450.7754.10-
Table 2  EDS results of GI panels after different test periods of simulated marine atmospheric environment
Fig.7  Micro-morphologies and element surface distribution of the GI coating section after 24 d (a), 56 d (b), 104 d (c) and 120 d (d) in simulated marine atmospheric environment
Fig.8  Electrochemical impedance spectra of GI plates in acidic (1±0.1) g/L NaHSO3 solution after different test cycles: (a) Nyquist diagram, (b) Bode mode diagram, (c) Bode phase diagram
Fig.9  Equivalent circuits of GI plate in acidic (50±5) g/L NaCl solution: (a) 24, 56 and 104 d, (b) 120 d
Time / dRs / Ω·cm2Rf / Ω·cm2Q1 / F·cm-2n1Q2 / F·cm-2n2Rr / Ω·cm2Q3 / F·cm-2n3Rct / Ω·cm2Chi-squared
2424.3---1.89×10-50.916.21.3×10-30.51.36×1031.2×10-3
5623.5---6.18×10-60.7440.24.2×10-50.61.75×1042.8×10-3
10424.8---6.34×10-50.671.63.1×10-30.51.39×1034.0×10-4
1208×10-53709×10-50.31.4×10-40.63.1×1035×10-40.67.5×1034.84×10-5
Table 3  Equivalent circuit element fitting values of GI plate in acidic (50±5) g/L NaCl solution
1 Wallinder I O, Leygraf C. A critical review on corrosion and runoff from zinc and zinc-based alloys in atmospheric environments [J]. Corrosion, 2017, 73: 1060
doi: 10.5006/2458
2 Maniam K K, Paul S. Corrosion performance of electrodeposited zinc and zinc-alloy coatings in marine environment [J]. Corros. Mater. Degrad., 2021, 2: 163
doi: 10.3390/cmd2020010
3 De Azevedo Alvarenga E, De Freitas Cunha Lins V. Atmospheric corrosion evaluation of electrogalvanized, hot-dip galvanized and galvannealed interstitial free steels using accelerated field and cyclic tests [J]. Surf. Coat. Technol., 2016, 306: 428
doi: 10.1016/j.surfcoat.2016.04.021
4 Wang J, Huang Q D, Liu J, et al. Accelerated indoor corrosion of galvanized steel in a simulated atmospheric environment of Guangzhou area [J]. Chin. J. Mater. Res., 2018, 32: 631
doi: 10.11901/1005.3093.2017.543
王 劲, 黄青丹, 刘 静 等. 镀锌钢在模拟广州地区大气环境中的室内加速腐蚀研究 [J]. 材料研究学报, 2018, 32: 631
5 Cao J Y, Fang Z G, Li L, et al. Corrosion behavior of domestic galvanized steel in different water environment: fresh water and salt water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 169
曹京宜, 方志刚, 李 亮 等. 国产镀锌钢在不同水环境中的腐蚀行为: I淡水和盐水 [J]. 中国腐蚀与防护学报, 2021, 41: 169
doi: 10.11902/1005.4537.2021.003
6 Quintana P, Veleva L, Cauich W, et al. Study of the composition and morphology of initial stages of corrosion products formed on Zn plates exposed to the atmosphere of southeast Mexico [J]. Appl. Surf. Sci., 1996, 99: 325
doi: 10.1016/0169-4332(96)00597-1
7 Sánchez P, Fernández B, Menéndez A, et al. Quantitative depth profile analysis of metallic coatings by pulsed radiofrequency glow discharge optical emission spectrometry [J]. Anal. Chim. Acta, 2011, 684: 47
doi: 10.1016/j.aca.2010.10.039
8 Da Silva P S G, Costa A N C, Mattos O R, et al. Evaluation of the corrosion behavior of galvannealed steel in chloride aqueous solution and in tropical marine environment [J]. J. Appl. Electrochem., 2006, 36: 375
doi: 10.1007/s10800-005-9083-x
9 Al-Negheimish A, Hussain R R, Alhozaimy A, et al. Corrosion performance of hot-dip galvanized zinc-aluminum coated steel rebars in comparison to the conventional pure zinc coated rebars in concrete environment [J]. Construct. Build. Mater., 2021, 274: 121921
doi: 10.1016/j.conbuildmat.2020.121921
10 Yadav A P, Katayama H, Noda K, et al. Effect of Fe-Zn alloy layer on the corrosion resistance of galvanized steel in chloride containing environments [J]. Corros. Sci., 2007, 49: 3716
doi: 10.1016/j.corsci.2007.03.039
11 Ma S D, Liu X, Wang Z D, et al. Characterization of seawater corrosion interface of zinc coated steel plate in Zhong-gang harbor [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 585
马士德, 刘 欣, 王在东 等. 普碳钢表面锌防护层在青岛中港海水中耐蚀与防污损性能对比研究 [J]. 中国腐蚀与防护学报, 2021, 41: 585
doi: 10.11902/1005.4537.2020.248
12 Friel J J. Atmospheric corrosion products on Al, Zn, and AlZn metallic coatings [J]. Corrosion, 1986, 42: 422
doi: 10.5006/1.3584923
13 Tittarelli F, Bellezze T. Investigation of the major reduction reaction occurring during the passivation of galvanized steel rebars [J]. Corros. Sci., 2010, 52: 978
doi: 10.1016/j.corsci.2009.11.021
14 Sandberg J, Wallinder I O, Leygraf C, et al. Corrosion-induced zinc runoff from construction materials in a marine environment [J]. J. Electrochem. Soc., 2007, 154: C120
doi: 10.1149/1.2403078
15 Dos Santos A P, Manhabosco S M, Rodrigues J S, et al. Comparative study of the corrosion behavior of galvanized, galvannealed and Zn55Al coated interstitial free steels [J]. Surf. Coat. Technol., 2015, 279: 150
doi: 10.1016/j.surfcoat.2015.08.046
16 Vera R, Guerrero F, Delgado D, et al. Atmospheric corrosion of galvanized steel and precipitation runoff from zinc in a marine environment [J]. J. Brazil. Chem. Soc., 2013, 24: 449
doi: 10.1590/S0103-50532013000300013
17 Blanco M T, Andrade C, Macias A. SEM Study of the Corrosion Products of Galvanized Reinforcements Immersed in Solutions in the pH Range 12·6 to 13·6 [J]. Br. Corros. J., 1984, 19: 41
doi: 10.1179/000705984798273524
18 Azmat N S, Ralston K D, Muddle B C, et al. Corrosion of Zn under acidified marine droplets [J]. Corros. Sci., 2011, 53: 1604
doi: 10.1016/j.corsci.2011.01.044
19 Schmidt D P, Shaw B A, Sikora E, et al. Corrosion protection assessment of sacrificial coating systems as a function of exposure time in a marine environment [J]. Prog. Organ. Coat., 2006, 57: 352
doi: 10.1016/j.porgcoat.2006.09.021
20 Lyon S B, Thompson G E, Johnson J B, et al. Accelerated atmospheric corrosion testing using a cyclic wet/dry exposure test: aluminum, galvanized steel, and steel [J]. Corrosion, 1987, 43: 719
doi: 10.5006/1.3583858
21 Vilche J R, Jüttner K, Lorenz W J, et al. Semiconductor properties of passive films on Zn, Zn‐Co, and Zn‐Ni substrates [J]. J. Electrochem. Soc., 1989, 136: 3773
doi: 10.1149/1.2096546
[1] WANG Hua, WANG Yingjie, LIU Enze. Hot Corrosion Behavior of New Type Co-Al-W Superalloys with Different Ni Contents[J]. 中国腐蚀与防护学报, 2023, 43(6): 1419-1426.
[2] ZHAO Lu, LI Qian, ZHAO Tianliang. Corrosion Behavior and Sealing Technologies of Bronze[J]. 中国腐蚀与防护学报, 2023, 43(6): 1165-1177.
[3] YANG Haifeng, YUAN Zhizhong, LI Jian, ZHOU Naipeng, GAO Feng. Effect of Ni Content on Corrosion Behavior of Cu-bearing Aged Weldable Steels in a Simulated Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[4] ZHOU Hao, YOU Shijie, WANG Shengli. Corrosion Behavior and Corrosion Inhibitor for Copper Artifacts in CO2 Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
[5] LIU Mingming, YANG Xiaobing, CHEN Xiaoqi, WANG Zhengbin, ZHENG Yugui, HE Chunlin. Research Progress on Corrosion Behavior of Metallic Materials in Acetic Acid Environment[J]. 中国腐蚀与防护学报, 2023, 43(1): 13-21.
[6] GAO Qiuying, XU Yixuan, HU Pengwei, YAO Tianwan, QI Wenlong. Corrosion and Protection Technique of Regeneration Tower Bottom Reboiler in Natural Gas Purification Unit[J]. 中国腐蚀与防护学报, 2022, 42(4): 699-704.
[7] LIU Yichao, ZHONG Xiankang, HU Junying. Characteristics and Mechanisms of Elemental Sulfur Induced Corrosion of Sulfur-resistant Steels in Wet Flow CO2 Environment[J]. 中国腐蚀与防护学报, 2022, 42(3): 369-377.
[8] CUI Zhongyu, GE Feng, WANG Xin. Corrosion Mechanism of Materials in Three Typical Harsh Marine Atmospheric Environments[J]. 中国腐蚀与防护学报, 2022, 42(3): 403-409.
[9] ZHANG Jian, HUANG Jin, XU Jiapeng, LUO Guoqiang, SHEN Qiang. Corrosion Behavior of Molybdenum in LiF-LiCl-LiBr-Li Molten Salt at 500 ℃[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.
[10] LI Chengyuan, CHEN Xu, HE Chuan, LI Hongjin, PAN Xin. Alternating Current Induced Corrosion of Buried Metal Pipeline: A Review[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[11] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[12] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[13] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[14] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[15] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
No Suggested Reading articles found!