Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (3): 403-409    DOI: 10.11902/1005.4537.2021.165
Current Issue | Archive | Adv Search |
Corrosion Mechanism of Materials in Three Typical Harsh Marine Atmospheric Environments
CUI Zhongyu(), GE Feng, WANG Xin
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Download:  HTML  PDF(10895KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In this work, the corrosion behavior of marine engineering materials in three typical harsh marine atmospheric environments is investigated i.e., the so called "Antarctic low-temperature and high-irradiation ice-snow freezing-melting environment", "high-temperature, high-humidity and high-salt fog atmospheric environment of South China Sea", and "coastal chlorine-haze coupling environment". The results show that in Antarctic environment, the electrochemical corrosion process can occur even beneath the cover of snow and ice at extremely low temperature. The freezing-melting process of ice and snow leads to the existence of surface electrolyte film for a long period, which promotes the corrosion reactions and accelerates the localized corrosion. In the environment of the South China Sea, there is a synergistic effect of chemical oxidation and electrochemical corrosion on the surface of non-ferrous materials in high humidity and high Cl- atmospheric environment at high temperature. Different aluminum alloys have different corrosion initiation and propagation driving forces (i.e., diffusion and charge transfer, hydrogen-induced intergranular cracking, and wedging effect of corrosion products). The synergistic effect of time of wetness (TOW) and Cl- content lead to the deviation of corrosion dynamics from the power function. In the coastal chlorine-haze coupling environment, the key controlling factor of NH4+ in acceleration of corrosion in the chlorine-haze environment is the continuous supply of H+ caused by the buffering effect of NH4+. Meanwhile,“quasi auto-catalytic pitting” corrosion occurs because of the synergistic effect of Cl-, NO3-, and NH4+.

Key words:  atmospheric corrosion      severe marine environment      south pole      corrosion mechanism     
Received:  14 July 2021     
ZTFLH:  TG172  
Fund: Fundamental Research Funds for the Central Universities(201762008);National Science and Technology Resources Investigation Program of China(2019FY101400)
Corresponding Authors:  CUI Zhongyu     E-mail:  cuizhongyu@ouc.edu.cn
About author:  CUI Zhongyu, E-mail: cuizhongyu@ouc.edu.cn

Cite this article: 

CUI Zhongyu, GE Feng, WANG Xin. Corrosion Mechanism of Materials in Three Typical Harsh Marine Atmospheric Environments. Journal of Chinese Society for Corrosion and protection, 2022, 42(3): 403-409.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.165     OR     https://www.jcscp.org/EN/Y2022/V42/I3/403

Fig.1  Macroscopic corrosion morphologies of the skyward (a) and backward (b) surfaces of Q235 steel sample after exposure in Zhongshan Station of the South Pole for 1 month, corrosion product morphology (c), pitting morphology (d), Raman analysis of the corrosion products (e), surface profile (f) and depth distributions (g, h)
Fig.2  Temperature cyclic range (a) and corrosion rate of Q235 steel in the laboratory tests (b)
Fig.3  Mass loss (a), pit depth variation (b) of AZ31 Mg-based alloy during exposure in Xisha marine atmosphere, and cross-sectional morphology and element mappings (c) of the corrosion product layer formed on pure Zn after exposure for 4 a[14,16]
Fig.4  Macroscopic corrosion morphologies of AZ31 Mg-based alloy after immersion for 24 h in 0.1 mol/L NaCl solutions containing different concentrations of NH4NO3[24]
Fig.5  Schematic diagrams of the corrosion process of AZ31 Mg-based alloy in 0.1 mol/L NaCl solutions with low (a), medium (b) and high (c) concentrations of NH4NO3
1 Wang J, Chen J J, Xie Y, et al. Evaluation of environmental factors related with atmosphere corrosivity in hunan provice by atmospheric corrosion monitoring technique [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 487
王军, 陈军君, 谢亿等. 湖南地区大气腐蚀严酷性的环境因素与大气腐蚀监测仪评定 [J]. 中国腐蚀与防护学报, 2021, 41: 487
2 Li X G, Li Q, Pei Z B, et al. Latest developments on atmospheric corrosion monitoring technologies for steels [J]. Angang Technol., 2020, (6): 1
李晓刚, 李清, 裴梓博等. 钢铁大气腐蚀监测技术研究进展 [J]. 鞍钢技术, 2020, (6): 1
3 Zhao J B, Zhao Q Y, Chen L H, et al. Effect of different surface treatments on corrosion behavior of 300M steel in Qingdao marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 504
赵晋斌, 赵起越, 陈林恒等. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2019, 39: 504
4 de la Fuente D, Díaz I, Simancas J, et al. Long-term atmospheric corrosion of mild steel [J]. Corros. Sci., 2011, 53: 604
5 de la Fuente D, Otero-Huerta E, Morcillo M. Studies of long-term weathering of aluminium in the atmosphere [J]. Corros. Sci., 2007, 49: 3134
6 de la Fuente D, Castaño J G, Morcillo M. Long-term atmospheric corrosion of zinc [J]. Corros. Sci., 2007, 49: 1420
7 Natesan M, Venkatachari G, Palaniswamy N. Kinetics of atmospheric corrosion of mild steel, zinc, galvanized iron and aluminium at 10 exposure stations in India [J]. Corros. Sci., 2006, 48: 3584
8 Li X G, Dong C F, Gao J, et al. The scientific research and data-sharing network of steels atmosphere corrosion in China [J]. Met. World, 2010, (4): 1
李晓刚, 董超芳, 高瑾等. 中国钢铁材料大气腐蚀科学研究和数据共享网络建设 [J]. 金属世界, 2010, (4): 1
9 Li X G, Xiao K, Dong C F, et al. Corrosion mechanism and classification in marine atmosphere of China [A]. Conf. Mar. Mater. Corros. Prot. [C]. Beijing, 2014: 7
李晓刚, 肖葵, 董超芳等. 我国海洋大气腐蚀分级分类与机理 [A]. 2014海洋材料腐蚀与防护大会 [C]. 北京, 2014: 7
10 Cao C N. Natrual Environment Corrosion of Materials in China [M]. Beijing: Chemical Industry Press, 2005
曹楚南. 中国材料的自然环境腐蚀 [M]. 北京: 化学工业出版社, 2005
11 Maxwell P, Viduka A. Antarctic observations: on metal corrosion at three historic huts on Ross Island [A]. Proceedings of Metal 2004 [C]. Canberra, 2004: 484
12 Mikhailov A A, Strekalov P V, Panchenko Y M. Atmospheric corrosion of metals in regions of cold and extremely cold climate (a review) [J]. Prot. Met., 2008, 44: 644
13 Morcillo M, Chico B, de la Fuente D, et al. Atmospheric corrosion of reference metals in Antarctic sites [J]. Cold Reg. Sci. Technol., 2004, 40: 165
14 Cui Z Y, Li X G, Xiao K, et al. Atmospheric corrosion of field-exposed AZ31 magnesium in a tropical marine environment [J]. Corros. Sci., 2013, 76: 243
15 Cui Z Y, Li X G, Xiao K, et al. Atmospheric corrosion behaviour of pure Al 1060 in tropical marine environment [J]. Corros. Eng. Sci. Technol., 2015, 50: 438
16 Cui Z Y, Li X G, Xiao K, et al. Corrosion behavior of field-exposed zinc in a tropical marine atmosphere [J]. Corrosion, 2014, 70: 731
17 Cui Z Y, Li X G, Xiao K, et al. Pitting corrosion behaviour of AZ31 magnesium in tropical marine atmosphere [J]. Corros. Eng. Sci. Technol., 2014, 49: 363
18 Cui Z Y, Ge F, Li X G, et al. Mechanistic studies of atmospheric corrosion behavior of Al and Al-based alloys in a tropical marine environment [J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2017, 32: 633
19 Cui Z Y, Li X G, Man C, et al. Corrosion behavior of field-exposed 7A04 aluminum alloy in the Xisha tropical marine atmosphere [J]. J Mater. Eng. Perform., 2015, 24: 2885
20 Wang J, Hu Z M, Chen Y Y, et al. Contamination characteristics and possible sources of PM10 and PM2.5 in different functional areas of Shanghai, China [J]. Atmos. Environ., 2013, 68: 221
21 Pan H, Wang L W, Lin Y, et al. Mechanistic study of ammonium-induced corrosion of AZ31 magnesium alloy in sulfate solution [J]. J. Mater. Sci. Technol., 2020, 54: 1
22 Ge F, Yin J X, Liu Y, et al. Roles of pH in the NH4+-induced corrosion of AZ31 magnesium alloy in chloride environment [J]. J. Magnes. Alloy., 2021, DOI: 10.1016/j.jma.2021.02.004
23 Cui Z Y, Ge F, Lin Y, et al. Corrosion behavior of AZ31 magnesium alloy in the chloride solution containing ammonium nitrate [J]. Electrochim. Acta, 2018, 278: 421
24 Yu H R, Zhang W L, Cui Z Y. Difference in corrosion behavior of four Mg-alloys in Cl--NH4+-NO3- containing solution [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 553
于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究 [J]. 中国腐蚀与防护学报, 2020, 40: 553
25 Tian H Y, Sun F L, Chu F Z, et al. Passivation behavior and surface chemistry of 316 SS in the environment containing Cl- and NH4+ [J]. J. Electroanal. Chem., 2021, 886: 115138
[1] LIU Yichao, ZHONG Xiankang, HU Junying. Characteristics and Mechanisms of Elemental Sulfur Induced Corrosion of Sulfur-resistant Steels in Wet Flow CO2 Environment[J]. 中国腐蚀与防护学报, 2022, 42(3): 369-377.
[2] ZHANG Jian, HUANG Jin, XU Jiapeng, LUO Guoqiang, SHEN Qiang. Corrosion Behavior of Molybdenum in LiF-LiCl-LiBr-Li Molten Salt at 500 ℃[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.
[3] WANG Zhigao, HAI Chao, JIANG Jie, LAN Xinsheng, DU Cuiwei, LI Xiaogang. Corrosion Behavior of Q235 Steels in Atmosphere at Deyang District for one Year[J]. 中国腐蚀与防护学报, 2021, 41(6): 871-876.
[4] XIA Xiaojian, CAI Jianbin, LIN Deyuan, WAN Xinyuan, LI Yangsen, ZHANG Biaohua, CHEN Yunxiang, HAN Jiceng, ZOU Zhimin, JIANG Chunhai. Corrosion Status, Corrosion Mechanisms and Anti-corrosion Measures in Coastal Substations[J]. 中国腐蚀与防护学报, 2021, 41(5): 697-704.
[5] WANG Jun, CHEN Junjun, XIE Yi, XU Song, LIU Lanlan, WU Tangqing, YIN Fucheng. Evaluation of Environmental Factors Related with Atmosphere Corrosivity in Hunan Provice by Atmospheric Corrosion Monitoring Technique[J]. 中国腐蚀与防护学报, 2021, 41(4): 487-492.
[6] CHEN Wenjuan, FANG Lian, PAN Gang. Corrosion Evolution Characteristics of Q235B Steel in O3/SO2 Composite Atmosphere[J]. 中国腐蚀与防护学报, 2021, 41(4): 450-460.
[7] LI Chengyuan, CHEN Xu, HE Chuan, LI Hongjin, PAN Xin. Alternating Current Induced Corrosion of Buried Metal Pipeline: A Review[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[8] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[9] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[10] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[11] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[12] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[13] FAN Yi,CHEN Linheng,CAI Jiaxing,DAi Qinqin,MA Hongchi,CHENG Xuequn. Corrosion Behavior of Hot-rolled AH36 Plate in Indoor Storage Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[14] PAN Chengcheng,MA Chao,XIA Dahai. Estimation for Relevance of Atmospheric Corrosion Initiation with Surface Texture of Several Metallic Materials by Electron Backscattering Diffraction[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[15] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
No Suggested Reading articles found!