Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (6): 1178-1188    DOI: 10.11902/1005.4537.2022.367
Current Issue | Archive | Adv Search |
Research Progress of Stress Corrosion Cracking of Ultra-high Strength Steels for Aircraft Landing Gear
LI Shuang1, DONG Lijin1(), ZHENG Huaibei2, WU Chengchuan2, WANG Hongli2, LING Dong1, WANG Qinying1
1.School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
2.Chengdu Advanced Metal Materials Industry Technology Research Institute Co., Ltd., Chengdu 610300, China
Cite this article: 

LI Shuang, DONG Lijin, ZHENG Huaibei, WU Chengchuan, WANG Hongli, LING Dong, WANG Qinying. Research Progress of Stress Corrosion Cracking of Ultra-high Strength Steels for Aircraft Landing Gear. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1178-1188.

Download:  HTML  PDF(6533KB) 
Export:  BibTeX | EndNote (RIS)      

Stress corrosion cracking (SCC) is one of the failure models of ultra-high strength steels for aircraft landing gear. This paper sums up the development history of ultra-high strength steels first, followed by a brief introduction of the mechanism and model of SCC. The test methods of SCC and the characterization of hydrogen were also summarized. Key factors affecting the SCC of ultra-high strength steels, such as the alloy composition, microstructure, stress and environment were discussed thoroughly. Finally, trends and challenges in the research of SCC for aircraft landing gear steels were briefly addressed.

Key words:  aircraft landing gear      ultra-high strength steels      stress corrosion cracking     
Received:  25 November 2022      32134.14.1005.4537.2022.367
ZTFLH:  TG178  
Fund: National Natural Science Foundation of China(52001264)
Corresponding Authors:  DONG Lijin, E-mail:

URL:     OR

Fig.1  Crack growth rate vsK curves for several ultra-high strength steels in 3.5%NaCl solution at the applied potential of -550 mVSCE[18]
Ferrium M540.3010.
Ferrium S530.215.514.
Custom 4650.0110.90.10.911.4-0.71.6Balance
Table 1  Chemical compositions of several typical ultra-high strength steels [22]
Fig.2  Schematic illustrations of traps for hydrogen in steels: (a) atomic scale, (b) microscopic scale[16]
Fig.3  Enlarged distributions of the boundaries between martensite block (green lines) and packet (red lines) for Ferrium M54 steel after final tempering without (a) and with cryogenic pre-treatment at 1 ℃/min (b) and 3 ℃/min (c), and direct soaking at -73 ℃ (d) [10]
Fig.4  Effects of applied potential on KTH (a) and da/dt (b) of several ultra-high strength steels in 3.5%NaCl solution[18]
1 Wang X H, Luo H W. Research and application progress in ultra-high strength stainless steel for aircraft landing gear [J]. Mater. Eng., 2019, 47(9): 1
王晓辉, 罗海文. 飞机起落架用超高强度不锈钢的研究及应用进展 [J]. 材料工程, 2019, 47(9): 1
2 Zhao B, Xu G X, He F, et al. Present status and prospect of ultra high strength steel applied to aircraft landing gear [J]. J. Aeronaut. Mater., 2017, 37(6): 1
赵 博, 许广兴, 贺 飞 等. 飞机起落架用超高强度钢应用现状及展望 [J]. 航空材料学报, 2017, 37(6): 1
3 Zeng R C, Han E H. Corrosion and Protection of Materials [M]. Beijing: Chemical Industry Press, 2006
曾荣昌, 韩恩厚. 材料的腐蚀与防护 [M]. 北京: 化学工业出版社, 2006
4 Liao L H. Cracking analysis and protection of the axle of B757 landing gear [J]. Total Corros. Control, 2004, 18(5): 15
廖灵洪. B757飞机起落架轮轴断裂原因分析与防护 [J]. 全面腐蚀控制, 2004, 18(5): 15
5 Yang Z, Liu Z B, Liang J X, et al. Correlation between the microstructure and hydrogen embrittlement resistance in a precipitation-hardened martensitic stainless steel [J]. Corros. Sci., 2021, 182: 109260
doi: 10.1016/j.corsci.2021.109260
6 Zhang H P, Wang C X, Du X. Aircraft landing gear with the development of 300M ultra high strength steel and research [J]. J. Harbin Univ. Sci. Technol., 2011, 16(6): 73
张慧萍, 王崇勋, 杜 煦. 飞机起落架用300M超高强钢发展及研究现状 [J]. 哈尔滨理工大学学报, 2011, 16(6): 73
7 Sun Y K, Zhang W. Development and research status of materials used for landing gear of civil aircraft [J]. Hot Work. Technol., 2018, 47(20): 22
孙艳坤, 张 威. 民机起落架用材料的发展与研究现状 [J]. 热加工工艺, 2018, 47(20): 22
8 Li A N, Li Y, Wang C X, et al. Influence of Mo on secondary hardening behavior of ultra-high strength AF1410 steel [J]. Iron Steel, 2007, 42(9): 60
李阿妮, 厉 勇, 王春旭 等. Mo含量对AF1410钢二次硬化效果的影响 [J]. 钢铁, 2007, 42(9): 60
9 Li Z, Zhao Z Y. Research and development of AerMet100 steel [J]. J. Aeronaut. Mater., 2006, 26(3): 265
李 志, 赵振业. AerMet100钢的研究与发展 [J]. 航空材料学报, 2006, 26(3): 265
10 Zhang H L, Zhang G Q, Zhou H C, et al. Influence of cooling rate during cryogenic treatment on the hierarchical microstructure and mechanical properties of M54 secondary hardening steel [J]. Mater. Sci. Eng., 2022, 851A: 143659
11 Zhang Y P, Zhan D P, Qi X W, et al. Effect of solid-solution temperature on the microstructure and properties of ultra-high-strength ferrium S53® steel [J]. Mater. Sci. Eng., 2018, 730A: 41
12 Wang L, Fei J Y, Xin W L. Stress corrosion fracture and its precautions on landing gear of airplane [J]. Hot Working Technol., 2011, 40(4): 186
王 磊, 费敬银, 辛文利. 飞机起落架应力腐蚀断裂及预防措施 [J]. 热加工工艺, 2011, 40(4): 186
13 Tian S, Liu Z B, Fu R L, et al. Investigation of stress corrosion cracking behavior and mechanism analysis of a 1900 MPa-grade ultra-high-strength stainless steel [J]. J. Iron Steel Res. Int., 2022, 29: 1474
doi: 10.1007/s42243-021-00710-2
14 De Francisco U, Larrosa N O, Peel M J. Hydrogen environmentally assisted cracking during static loading of AA7075 and AA7449 [J]. Mater Sci. Eng., 2020, 772A: 138662
15 Turnbull A. Modelling of environment assisted cracking [J]. Corros. Sci., 1993, 34: 921
doi: 10.1016/0010-938X(93)90072-O
16 Lynch S P. Mechanisms and kinetics of environmentally assisted cracking: current status, issues, and suggestions for further work [J]. Metall. Mater. Trans., 2013, 44A: 1209
17 Nagao A, Smith C D, Dadfarnia M, et al. The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel [J]. Acta Mater., 2012, 60: 5182
doi: 10.1016/j.actamat.2012.06.040
18 Pioszak G L, Gangloff R P. Hydrogen environment assisted cracking of modern ultra-high strength martensitic steels [J]. Metall. Mater. Trans., 2017, 48A: 4025
19 Lynch S P. Environmentally assisted cracking: Overview of evidence for an adsorption-induced localised-slip process [J]. Acta Metall., 1988, 36: 2639
doi: 10.1016/0001-6160(88)90113-7
20 Oriani R A, Josephic P H. Equilibrium aspects of hydrogen-induced cracking of steels [J]. Acta Metall., 1974, 22: 1065
doi: 10.1016/0001-6160(74)90061-3
21 Lee Y, Gangloff R P. Measurement and modeling of hydrogen environment-assisted cracking of ultra-high-strength steel [J]. Metall. Mater. Trans., 2007, 38A: 2174
22 Pioszak G. Hydrogen assisted cracking of ultra-high strength steels [D]. Charlottesville: University of Virginia, 2015
23 Gangloff R P. Probabilistic fracture mechanics simulation of stress corrosion cracking using accelerated laboratory testing and multi-scale modeling [J]. Corrosion, 2016, 72: 862
doi: 10.5006/1920
24 Rudomilova D, Prošek T, Luckeneder G. Techniques for investigation of hydrogen embrittlement of advanced high strength steels [J]. Corros. Rev., 2018, 36: 413
doi: 10.1515/corrrev-2017-0106
25 Liu B P, Zhang Z M, Wang J Q, et al. Review of stress corrosion crack initiation of nuclear structural materials in high temperature and high pressure water [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 513
刘保平, 张志明, 王俭秋 等. 核用结构材料在高温高压水中应力腐蚀裂纹萌生研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 513
doi: 10.11902/1005.4537.2021.130
26 Henthorne M. The slow strain rate stress corrosion cracking test—A 50 year retrospective [J]. Corrosion, 2016, 72: 1488
doi: 10.5006/2137
27 Wu L F, Li S M, Liu J H, et al. SCC evaluation of ultra-high strength steel in acidic chloride solution [J]. J. Cent. South Univ., 2012, 19: 2726
doi: 10.1007/s11771-012-1333-6
28 Hu Y B, Dong C F, Luo H, et al. Study on the hydrogen embrittlement of Aermet100 using hydrogen permeation and SSRT techniques [J]. Metall. Mater. Trans., 2017, 48A: 4046
29 Figueroa D, Robinson M J. The effects of sacrificial coatings on hydrogen embrittlement and re-embrittlement of ultra high strength steels [J]. Corros. Sci., 2008, 50: 1066
doi: 10.1016/j.corsci.2007.11.023
30 Dong X Q, Huang Y L. Research progress for stress corrosion cracking of stainless steel under marine environment [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 189
董希青, 黄彦良. 不锈钢在海洋环境中的环境敏感断裂研究进展 [J]. 中国腐蚀与防护学报, 2012, 32: 189
31 Khodabakhshi F, Kazeminezhad M. The effect of constrained groove pressing on grain size, dislocation density and electrical resistivity of low carbon steel [J]. Mater. Des., 2011, 32: 3280
doi: 10.1016/j.matdes.2011.02.032
32 Nibur K A, Somerday B P, Marchi C S, et al. The relationship between crack-tip strain and subcritical cracking thresholds for steels in high-pressure hydrogen gas [J]. Metall. Mater. Trans., 2013, 44A: 248
33 Venezuela J, Liu Q L, Zhang M X, et al. A review of hydrogen embrittlement of martensitic advanced high-strength steels [J]. Corros. Rev., 2016, 34: 153
doi: 10.1515/corrrev-2016-0006
34 Burns J T, Harris Z D, Dolph J D, et al. Measurement and modeling of hydrogen environment-assisted cracking in a Ni-Cu-Al-Ti superalloy [J]. Metall. Mater. Trans., 2016, 47A: 990
35 Wang X, Zhou W J, Hou D, et al. Effect of hydrogen on hydrogen permeation and stress corrosion behavior of low alloy steel in acid gas field [J]. Rare Met. Mater. Eng., 2020, 49: 3734
王 霞, 周雯洁, 侯 铎 等. 氢对酸性气田低合金钢氢渗透及应力腐蚀行为的影响 [J]. 稀有金属材料与工程, 2020, 49: 3734
36 Figueroa D, Robinson M J. Hydrogen transport and embrittlement in 300 M and AerMet100 ultra high strength steels [J]. Corros. Sci., 2010, 52: 1593
doi: 10.1016/j.corsci.2010.01.001
37 Li D M, Gangloff R P, Scully J R. Hydrogen trap states in ultrahigh-strength AERMET 100 steel [J]. Metall. Mater. Trans., 2004, 35A: 849
38 Thomas R L S, Li D M, Gangloff R P, et al. Trap-governed hydrogen diffusivity and uptake capacity in ultrahigh-strength AERMET 100 steel [J]. Metall. Mater. Trans., 2002, 33A: 1991
39 Evers S, Senöz C, Rohwerder M. Hydrogen detection in metals: a review and introduction of a Kelvin probe approach [J]. Sci. Technol. Adv. Mater., 2013, 14: 014201
40 Wen C J, Ho C, Boukamp B A, et al. Use of electrochemical methods to determine chemical-diffusion coefficients in alloys: Application to ‘LiAl’ [J]. Int. Met. Rev., 1981, 26: 253
doi: 10.1179/imr.1981.26.1.253
41 Sundaram P A, Marble D K. Hydrogen diffusivity in Aermet® 100 at room temperature under galvanostatic charging conditions [J]. J. Alloy. Compd., 2003, 360: 90
doi: 10.1016/S0925-8388(03)00332-3
42 Zhang B L, Zhu Q S, Xu C, et al. Atomic-scale insights on hydrogen trapping and exclusion at incoherent interfaces of nanoprecipitates in martensitic steels [J]. Nat. Commun., 2022, 13: 3858
doi: 10.1038/s41467-022-31665-x pmid: 35790737
43 Zhao T L, Wang S Q, Liu Z Y, et al. Effect of cathodic polarisation on stress corrosion cracking behaviour of a Ni(Fe, Al)-maraging steel in artificial seawater [J]. Corros. Sci., 2021, 179: 109176
doi: 10.1016/j.corsci.2020.109176
44 Takahashi J, Kawakami K, Tarui T. Direct observation of hydrogen-trapping sites in vanadium carbide precipitation steel by atom probe tomography [J]. Scr. Mater., 2012, 67: 213
doi: 10.1016/j.scriptamat.2012.04.022
45 Jiao Y, Zhang S H, Tan Y. Research progress on stress corrosion cracking of stainless steel for nuclear power plant in high-temperature and high-pressure water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 417
焦 洋, 张胜寒, 檀 玉. 核电站用不锈钢在高温高压水中应力腐蚀开裂行为的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 417
46 Dwivedi S K, Vishwakarma M. Hydrogen embrittlement in different materials: A review [J]. Int. J. Hydrog. Energy, 2018, 43: 21603
doi: 10.1016/j.ijhydene.2018.09.201
47 Zhang Y P, Zhan D P, Qi X W, et al. Austenite and precipitation in secondary-hardening ultra-high-strength stainless steel [J]. Mater. Charact., 2018, 144: 393
doi: 10.1016/j.matchar.2018.07.038
48 Ifergane S, David R B, Sabatani E, et al. Hydrogen diffusivity and trapping in custom 465 stainless steel [J]. J. Electrochem. Soc., 2018, 165: C107
doi: 10.1149/2.0261803jes
49 Turnbull A. The environmentally small/short crack growth effect: current understanding [J]. Corros. Rev., 2012, 30: 1
doi: 10.1515/corrrev-2012-0003
50 Ayer R, Machmeier P. On the characteristics of M2C carbides in the peak hardening regime of AerMet 100 steel [J]. Metall. Mater. Trans., 1998, 29A: 903
51 Mondière A, Déneux V, Binot N, et al. Controlling the MC and M2C carbide precipitation in Ferrium® M54® steel to achieve optimum ultimate tensile strength/fracture toughness balance [J]. Mater. Charact., 2018, 140: 103
doi: 10.1016/j.matchar.2018.03.041
52 Uluc A V, Tichelaar F D, Terryn H, et al. The role of heat treatment and alloying elements on hydrogen uptake in Aermet 100 ultrahigh-strength steel [J]. J. Electroanal. Chem., 2015, 739: 130
doi: 10.1016/j.jelechem.2014.12.011
53 Chen B F, Yan F Y, Yan M F, et al. Nitriding behavior and mechanical properties of AerMet100 steel and first-principles calculations of phase interfaces [J]. J. Mater. Res. Technol., 2022, 19: 46
doi: 10.1016/j.jmrt.2022.05.017
54 Wang L, Dong C F, Man C, et al. Effect of microstructure on corrosion behavior of high strength martensite steel—A literature review [J]. Int. J. Miner. Metall. Mater., 2021, 28: 754
doi: 10.1007/s12613-020-2242-6
55 Wei F G, Tsuzaki K. Hydrogen Trapping Phenomena in Martensitic Steels [M]. Tsukuba: Woodhead Publishing, 2012: 493
56 Oudriss A, Creus J, Bouhattate J, et al. Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel [J]. Acta Mater., 2012, 60: 6814
doi: 10.1016/j.actamat.2012.09.004
57 Momotani Y, Shibata A, Yonemura T, et al. Effect of initial dislocation density on hydrogen accumulation behavior in martensitic steel [J]. Scr. Mater., 2020, 178: 318
doi: 10.1016/j.scriptamat.2019.11.051
58 Ma C, Cui Y F, Zhang Q, et al. Review of hydrogen embrittlement of medium manganese TRIP steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 885
马 成, 崔彦发, 张 青 等. 中锰TRIP钢氢致开裂性能研究现状与进展 [J]. 中国腐蚀与防护学报, 2022, 42: 885
59 Venezuela J, Zhou Q J, Liu Q L, et al. The influence of microstructure on the hydrogen embrittlement susceptibility of martensitic advanced high strength steels [J]. Mater. Today Commun., 2018, 17: 1
60 Ayer R, Machmeier P M. Transmission electron microscopy examination of hardening and toughening phenomena in Aermet 100 [J]. Metall. Mater. Trans., 1993, 24A: 1943
61 Ji B H, Gao H J. Mechanical properties of nanostructure of biological materials [J]. J. Mech. Phys. Solids, 2004, 52: 1963
doi: 10.1016/j.jmps.2004.03.006
62 Padmanabhan R, Wood W E. Stress corrosion cracking behavior of 300M steel under different heat treated conditions [J]. Corrosion, 1985, 41: 688
doi: 10.5006/1.3583005
63 Yoo C H, Lee H M, Chan J W, et al. M2C precipitates in isothermal tempering of high Co-Ni secondary hardening steel [J]. Metall. Mater. Trans., 1996, 27A: 3466
64 Ran X Z, Liu D, Li J, et al. Effects of microstructures on the fatigue crack growth behavior of laser additive manufactured ultrahigh-strength AerMet100 steel [J]. Mater. Sci. Eng., 2018, 721A: 251
65 Pound B G. Hydrogen trapping in high-strength steels [J]. Acta Mater., 1998, 46: 5733
doi: 10.1016/S1359-6454(98)00247-X
66 Jothi S, Croft T N, Brown S G R. Influence of grain boundary misorientation on hydrogen embrittlement in bi-crystal nickel [J]. Int. J. Hydrog. Energy, 2014, 39: 20671
doi: 10.1016/j.ijhydene.2014.07.020
67 Bechtle S, Kumar M, Somerday B P, et al. Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials [J]. Acta Mater., 2009, 57: 4148
doi: 10.1016/j.actamat.2009.05.012
68 Seita M, Hanson J P, Gradečak S, et al. The dual role of coherent twin boundaries in hydrogen embrittlement [J]. Nat. Commun., 2015, 6: 6164
doi: 10.1038/ncomms7164 pmid: 25652438
69 Wang X, Dong H B, Yuan D Q, et al. Effect of aging process on strength and toughness of AerMet100 steel [J]. J. Chin. Mater. Res., 2016, 30: 819
王 鑫, 董洪波, 袁大庆 等. 时效工艺对AerMet100钢强韧性能的影响 [J]. 材料研究学报, 2016, 30: 819
70 Kasana S S, Sharma S, Pandey O P. Influence of heat treatment (routes) on the microstructure and mechanical properties of 300M ultra high strength steel [J]. Arch. Civ. Mech. Eng., 2022, 22: 126
doi: 10.1007/s43452-022-00439-z
71 Li S H, Min N, Li J W, et al. Experimental verification of segregation of carbon and precipitation of carbides due to deep cryogenic treatment for tool steel by internal friction method [J]. Mater. Sci. Eng., 2013, 575A: 51
72 Gao Y K. Influence of local surface strengthening on fatigue properties of components with holes of an A-100 steel [J] Trans. Mater. Heat Treat., 2014, 35(5): 160
高玉魁. 表面强化对A-100钢带孔构件疲劳性能的影响 [J]. 材料热处理学报, 2014, 35(5): 160
73 Turnbull A. Modeling of the chemistry and electrochemistry in CracksA review [J]. Corrosion, 2001, 57: 175
doi: 10.5006/1.3290342
74 Lynch S. Mechanistic and fractographic aspects of stress corrosion cracking [J]. Corros. Rev., 2012, 30: 63
75 Kuehmann C, Tufts B, Trester P. Computational design for ultra high-strength alloy [J]. Adv. Mater. Proc., 2008, 166: 37
76 Arcari A, Moran J P, Horton D J, et al. The effect of alternate immersion on stress corrosion cracking behavior of steel and nickel alloys in natural seawater [A]. Corrosion 2021 [C]. Virtual, 2021: 16857
77 Akiyama E, Wang M Q, Li S J, et al. Studies of evaluation of hydrogen embrittlement property of high-strength steels with consideration of the effect of atmospheric corrosion [J]. Metall. Mater. Trans., 2013, 44A: 1290
78 Xu D, Yang X J, Li Q, et al. Review on corrosion test methods and evaluation techniques for materials in atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 447
徐 迪, 杨小佳, 李 清 等. 材料大气环境腐蚀试验方法与评价技术进展 [J]. 中国腐蚀与防护学报, 2022, 42: 447
79 Hillier E M K, Robinson M J. Hydrogen embrittlement of high strength steel electroplated with zinc-cobalt alloys [J]. Corros. Sci., 2004, 46: 715
doi: 10.1016/S0010-938X(03)00180-X
80 Bhadeshia H K D H. Prevention of hydrogen embrittlement in steels [J]. ISIJ Int., 2016, 56: 24
doi: 10.2355/isijinternational.ISIJINT-2015-430
81 Zhao J B, Zhao Q Y, Chen L H, et al. Effect of different surface treatments on corrosion behavior of 300M steel in Qingdao marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 39: 504
赵晋斌, 赵起越, 陈林恒 等. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2020, 39: 504
82 Lourenco J M, Da Sun S, Sharp K, et al. Fatigue and fracture behavior of laser clad repair of AerMet® 100 ultra-high strength steel [J]. Int. J. Fatigue, 2016, 85: 18
doi: 10.1016/j.ijfatigue.2015.11.021
83 Da Sun S, Leary M, Liu Q C, et al. Evaluation of microstructure and fatigue properties in laser cladding repair of ultrahigh strength AerMet® 100 steel [J]. J. Laser Appl., 2015, 27(suppl.2) : S29202
[1] LIU Yutong, CHEN Zhenyu, ZHU Zhongliang, FENG Rui, BAO Hansheng, ZHANG Naiqiang. SCC Susceptibility of 2.25Cr1Mo Steel and Its Weld Joints in High Temperature Steam[J]. 中国腐蚀与防护学报, 2022, 42(4): 647-654.
[2] LIU Baoping, ZHANG Zhiming, WANG Jianqiu, HAN En-Hou, KE Wei. Review of Stress Corrosion Crack Initiation of Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2022, 42(4): 513-522.
[3] LIU Haochen, FAN Lin, ZHANG Haibing, WANG Yingying, TANG Junlei, BAI Xuehan, SUN Mingxian. Research Progress of Stress Corrosion Cracking of Ti-alloy in Deep Sea Environments[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
[4] YU Deyuan, LIU Zhiyong, DU Cuiwei, HUANG Hui, LIN Nan. Research Progress and Prospect of Stress Corrosion Cracking of Pipeline Steel in Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(6): 737-747.
[5] SUN Baozhuang, ZHOU Xiaocheng, LI Xiaorong, SUN Weilu, LIU Zirui, WANG Yuhua, HU Yang, LIU Zhiyong. Stress Corrosion Cracking Behavior of 316L Stainless Steel with Varying Microstructure in Ammonium Chloride Environment[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818.
[6] LIN Zhaohui, MING Nanxi, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Hydrostatic Pressure on Corrosion Behavior of X70 Steel in Simulated Sea Water[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[7] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[8] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[9] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[10] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[11] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[12] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[13] Keqian ZHANG,Shilin HU,Zhanmei TANG,Pingzhu ZHANG. Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[14] Ruolin ZHU, Litao ZHANG, Jianqiu WANG, Zhiming ZHANG, En-Hou HAN. Stress Corrosion Crack Propagation Behavior of Elbow Pipe of Nuclear Grade 316LN Stainless Steel in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[15] Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
No Suggested Reading articles found!