Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (1): 67-72    DOI: 10.11902/1005.4537.2021.011
Current Issue | Archive | Adv Search |
Corrosion Behavior of Molybdenum in LiF-LiCl-LiBr-Li Molten Salt at 500 ℃
ZHANG Jian(), HUANG Jin, XU Jiapeng, LUO Guoqiang, SHEN Qiang
State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Download:  HTML  PDF(14440KB) 
Export:  BibTeX | EndNote (RIS)      

Corrosion behavior of Mo, prepared by plasma activation sintering technique, in molten LiF-LiCl-LiBr-Li at 500 ℃ was examined by means of immersion test, XRD, FE-SEM and EDS. The results show that the sinttered Mo have good corrosion resistance in LiF-LiCl-LiBr molten salt, but it will be corroded by residual impurities forming corrosion products of MoO2 and MoS2. Furthermore, the addition of metallic Li into the molten salt will induce the grain boundary corrosion of Mo, where rich in O element, thereby lead to separation of Mo grains and severe corrosion of Mo. Meanwhile, the corrosion products changed from MoO2 to Li2CO3.

Key words:  lithium molten salt      molybdenum      corrosion behavior      corrosion mechanism      metallic Li     
Received:  15 January 2021     
ZTFLH:  TG174  
Fund: National Key R&D Program of China(2018YFB0905600)
Corresponding Authors:  ZHANG Jian     E-mail:
About author:  ZHANG Jian, E-mail:

Cite this article: 

ZHANG Jian, HUANG Jin, XU Jiapeng, LUO Guoqiang, SHEN Qiang. Corrosion Behavior of Molybdenum in LiF-LiCl-LiBr-Li Molten Salt at 500 ℃. Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 67-72.

URL:     OR

Fig.1  Mass change of Mo during corrosion in LiF-LiCl-LiBr molten salt for different time
Fig.2  XRD patterns of Mo after corrosion in LiF-LiCl-LiBr molten salt for different time
Fig.3  SEM images of Mo after corrosion in LiF-LiCl-LiBr molten salt for 0 h (a), 6 h (b), 12 h (c), 50 h (d), 150 h (e) and 300 h (f)
Fig.4  EDS mappings of Mo (a) and O (b) on the surface of Mo after corrosion in LiF-LiCl-LiBr for 150 h and the contents of Mo and O after corrosion for different time (c)
Fig.5  Cross-sectional images of Mo corroded in LiF-LiCl-LiBr for 6 h (a), 12 h (b), 50 h (c), 150 h (d), 300 h (e)
Fig.6  Mass change of Mo during corrosion for 150 h in LiF-LiCl-LiBr molten salt with the different contents of Li
Fig.7  XRD patterns of Mo corroded for 150 h in LiF-LiCl-LiBr with the different contents of Li
Fig.8  Surface (a, c, e) and cross-sectional (b, d, f) SEM images of Mo corroded in LiF-LiCl-LiBr molten salt with the additions of 0.1% (a, d), 0.25% (b, e) and 1% (c, f) Li
1 Kim H, Boysen D A, Newhouse J M, et al. Liquid metal batteries: Past, present, and future [J]. Chem. Rev., 2013, 113: 2075
2 Bradwell D J, Kim H, Sirk A H, et al. Magnesium-antimony liquid metal battery for stationary energy storage [J]. J. Am. Chem. Soc., 2012, 134: 1895
3 Wang K L, Jiang K, Chung B, et al. Lithium-antimony-lead liquid metal battery for grid-level energy storage [J]. Nature, 2014, 514: 348
4 Chen F, Jia M Y, She Y L, et al. Mechanical behavior of AlN/Mo functionally graded materials with various compositional structures [J]. J. Alloy. Compd., 2020, 816: 152512
5 Terai T, Suzuki A, Yoneoka T, et al. Compatibility of AlN with liquid lithium [J]. J. Nucl. Mater., 2000, 283-287: 1322
6 Liu Q, Wang X Y, Huang Y B, et al. Effect of molybdenum content on microstructure and corrosion resistance of CoCrFeNiMo high entropy alloy [J]. Chin. J. Mater. Res., 2020, 34: 868
刘谦, 王昕阳, 黄燕滨等. Mo含量对CoCrFeNiMo高熵合金组织及耐蚀性能的影响 [J]. 材料研究学报, 2020, 34: 868
7 Tao J C, Lu Y P. Effect of Mo content on microstructure, mechanical properties and corrosion resistance of Al0.1CoCrCu0.5FeNiMox high-entropy alloys [J]. Mater. Rev., 2020, 34: 8096
陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响 [J]. 材料导报, 2020, 34: 8096
8 Merwin A, Chidambaram D. Corrosion of INCONEL Alloy 625 in molten LiCl-Li2O-Li [J]. Nucl. Technol., 2017, 195: 204
9 Phillips W, Karmiol Z, Chidambaram D. Effect of metallic li on the corrosion behavior of Inconel 625 in molten LiCl-Li2O-Li [J]. J. Electrochem. Soc., 2019, 166: C162
10 Yan W, Wang S L, Guo S D, et al. Effects of Mo addition on microstructure and properties of WC-6Co cemented carbides [J]. Rare Met. Cement. Carbid., 2020, 48(4): 73
严维, 王水龙, 郭圣达等. Mo添加对WC-6Co硬质合金组织性能的影响 [J]. 稀有金属与硬质合金, 2020, 48(4): 73
11 Lu C J, Qu J B, Yang H, et al. Effect of element Mo on the corrosion resistance of shipbuilding steel for inner bottom plate of cargo oil tanks [J]. Corros. Prot., 2017, 38: 273
陆春洁, 曲锦波, 杨汉等. Mo元素对货油舱下底板用船板钢耐腐蚀性能的影响 [J]. 腐蚀与防护, 2017, 38: 273
12 Ding X B, Sun H, Yu G J, et al. Corrosion behavior of hastelloy N and 316L stainless steel in molten Li F-NaF-KF [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 543
丁祥彬, 孙华, 俞国军等. HastelloyN合金和316L不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2015, 35: 543
13 Liu H, Qiu W, Leng B, et al. Corrosion behavior of 304 and 316H stainless steels in molten LiF-NaF-KF [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 51
刘辉, 邱玮, 冷滨等. 304和316H不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 51
14 Liu W, Du K F, Hu X H, et al. Review on research status of common liquid metal corrosion in liquid metal energy storage batteries [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 81
刘威, 杜开发, 胡晓宏等. 液态金属储能电池中常用液态金属腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2020, 40: 81
15 Merwin A, Chidambaram D. The effect of Li0 on the corrosion of stainless steel alloy 316L exposed to molten LiCl-Li2O-Li [J]. Corros. Sci., 2017, 126: 1
16 Phillips W, Chidambaram D. Corrosion of stainless steel 316L in molten LiCl-Li2O-Li [J]. J. Nucl. Mater., 2019, 517: 241
17 Qiu J, Leng B, Liu H J, et al. Effect of SO42- on the corrosion of 316L stainless steel in molten FLiNaK salt [J]. Corros. Sci., 2018, 144: 224
18 Wang Y L, Wang Q, Liu H J, et al. Effects of the oxidants H2O and CrF3 on the corrosion of pure metals in molten (Li, Na, K) F [J]. Corros. Sci., 2016, 103: 268
[1] FANG Haojie, QU Hua, YANG Lihui, ZENG Qingya, WANG Lidan, YUAN Ning, HOU Baorong, CAO Lixin, YUAN Xundao. Corrosion Behavior of 9C Series of Powder Metallurgy Al-alloy with High Corrosion Resistance[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[2] LIU Quanbing, LIU Zongde, GUO Shengyang, XIAO Yi. Galvanic Corrosion Behavior of 5083 Al-alloy and 30CrMnSiA Steel in NaCl solutions[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
[3] ZHANG Xin, LIN Muyan, YANG Guangheng, WANG Zehua, SHAO Jia, ZHOU Zehua. Effect of Er on Corrosion Behavior of Marine Engineering 5052 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
[4] QIAO Zhongli, WANG Ling, SHI Yanhua, YANG Zongkui. Microstructure and Corrosion Resistance of Welded Joint of 14Cr1MoR Steel[J]. 中国腐蚀与防护学报, 2021, 41(3): 400-404.
[5] HUANG Tao, XU Chunxiang, YANG Lijing, LI Fuxia, JIA Qinggong, KUAN Jun, ZHANG Zhengwei, WU Xiaofeng, WANG Zhongqi. Effect of Zr Addition on Microstructure and Corrosion Behavior of Mg-3Zn-1Y Alloys[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[6] LI Chengyuan, CHEN Xu, HE Chuan, LI Hongjin, PAN Xin. Alternating Current Induced Corrosion of Buried Metal Pipeline: A Review[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[7] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[8] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[9] LI Lin, CHEN Yiqing, GAO Peng, AI Fangfang, ZHONG Bin, SAN Hongyu, YANG Ying. Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[10] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[11] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[12] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[13] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[14] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[15] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
No Suggested Reading articles found!