Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (4): 613-620    DOI: 10.11902/1005.4537.2021.210
Current Issue | Archive | Adv Search |
Corrosion Behavior of Heat-resistant Alloys in High Temperature CO2 Environment
LIANG Zhiyuan1(), XU Yiming1, WANG Shuo1,2, LI Yufeng1, ZHAO Qinxin1
1.MOE Key Laborary of Thermo-Fluid Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
2.Harbin Boiler Company Limited, Harbin 150046, China
Download:  HTML  PDF(19585KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Corrosion behavior of Sanicro 25 austenitic steel, HR230 and 740H Ni-based alloys in CO2 environment at 800, 900 and 1000 ℃ was studied by means of weight gain measurement, scanning electron microscope with energy dispersive X-ray spectroscopy and X-ray diffractometer. The results showed that the corrosion kinetic curves of the three alloys in the high-temperature CO2 environment conformed to the parabolic law. The reaction rates of the three alloys all increased with the temperature, and the thickness of surface corrosion products also increased with the temperature. The corrosion products generated on the surface of the three alloys were mainly Cr-rich oxides, which were caused by the high content of Cr. However,the structure of the surface corrosion products of Sanicro 25 steel and HR230 and 740H alloys was different. Sanicro 25 steel was a composite layer type, HR230 and 740H alloys was a single-layer type; both HR230 and 740H alloys had internal oxidation, and the high content of Al and Ti in 740H alloy made internal oxidation more serious, therewith degraded its corrosion resistance. According to the corrosion mass gain measurement results and the occurrence of internal oxidation phenomenon, the nickel-based alloy HR230 has superior corrosion resistance in high temperature CO2 environment.

Key words:  heat-resistance alloy      high-temperature carbon dioxide      corrosion behavior     
Received:  24 August 2021     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51806166);Outstanding Youth Fund of the Natural Science Foundation of Heilongjiang Province(YQ2020E032);China Postdoctoral Science Foundation(BX20190269);China Postdoctoral Science Foundation(2020M683474)
Corresponding Authors:  LIANG Zhiyuan     E-mail:  liangzy@xjtu.edu.cn
About author:  LIANG Zhiyuan, E-mail: liangzy@xjtu.edu.cn

Cite this article: 

LIANG Zhiyuan, XU Yiming, WANG Shuo, LI Yufeng, ZHAO Qinxin. Corrosion Behavior of Heat-resistant Alloys in High Temperature CO2 Environment. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 613-620.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.210     OR     https://www.jcscp.org/EN/Y2022/V42/I4/613

Fig.1  Experimental system diagram
MaterialCSiMnCrNiFeTiOthers
Sanicro 25 steel0.080.200.5022.5025.00Bal.---P:0.02, S:0.04, Nb:0.50
HR230 alloy0.100.300.5022.10Bal~59.90---0.01W:14.2, Mo:1.20, Al:0.37
740H alloy0.0280.030.0224.73Bal.0.121.31Al:1.53, Mo:0.3, Co:20.3
Table 1  Chemical compositions of three heat-resistant alloys (mass fraction / %)
Fig.2  Mass gain curves of three heat-resistant alloys during high temperature corrosion in carbon dioxide atmosphere at 800 ℃ (a), 900 ℃ (b) and 1000 ℃ (c)
Temperature / ℃Parabolic rate constant / g2·cm-4·s-1
Sanicro 25HR230740H
8001.78×10-141.11×10-155.44×10-14
9001.47×10-134.69×10-148.10×10-13
10001.82×10-129.84×10-139.81×10-12
Table 2  Parabolic rate constants of three heat-resistant alloys during high temperature corrosion at different temperatures
Fig.3  Mass changes of three heat-resistant alloys after 100 h corrosion at different temperatures
Fig.4  lnKpvs 1/T curves for three test alloys
Fig.5  Macro morphologies of 740H (a1-c1), HR230 (a2-c2) and Sanicro 25 (a3-c3) alloys after high temperature corrosion for 100 h at 800 ℃ (a), 900 ℃ (b) and 1000 ℃ (c)
Fig.6  Surface micromorphologies of Sanicro 25 steel (a), HR230 (b) and 740H (c) alloys after 800 ℃ (a1-c1), 900 ℃ (a2-c2) and 1000 ℃ (a3-c3) temperature corrosion at different temperatures for 100 h
Fig.7  Cross-sectional morphologies of Sanicro 25 steel (a), HR230 (b) and 740H (c) alloys after 100 h corrosion at 800 ℃ (a1-c1), 900 ℃ (a2-c2) and 1000 ℃ (a3-c3)
Fig.8  Cross-sectional morphology and elemental mappings for Sanicro 25 steel (a), HR230 alloy (b) and 740H alloy (c) after 100 h corrosion at 1000 ℃
Fig.9  XRD patterns of Sanicro 25 (a), HR230 (b) and 740H (c) alloys after 100 h corrosion at different temperatures
1 Ji S D, Zhou R C, Wang S P, et al. Current status of research and development of 700 ℃ advanced ultra-supercritical power generation technology and localization suggestions [J]. Therm. Power Gener., 2011, 40(7): 86
纪世东, 周荣灿, 王生鹏 等. 700 ℃等级先进超超临界发电技术研发现状及国产化建议 [J]. 热力发电, 2011, 40(7): 86
2 Lu J T, Zhao X B, Yuan Y, et al. Corrosion behavior of alloys in supercritical CO2 Brayton cycle power generation [J]. Proc. CSEE, 2016, 36: 739
鲁金涛, 赵新宝, 袁勇 等. 超临界二氧化碳布雷顿循环系统中材料的腐蚀行为 [J]. 中国电机工程学报, 2016, 36: 739
3 Feng J C. Thermodynamic analysis of supercritical carbon dioxide Brayton cycle power system [J]. Energy Conserv., 2019, 38(8): 34
冯建闯. 超临界二氧化碳布雷顿循环发电系统热力学分析 [J]. 节能, 2019, 38(8): 34
4 Li R T, Xiao B, Liu X, et al. Corrosion behavior of low alloy heat-resistant steel T23 in high-temperature supercritical carbon dioxide [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 327
李瑞涛, 肖博, 刘晓 等. 低合金耐热钢T23在高温超临界CO2环境中的腐蚀特性研究 [J]. 中国腐蚀与防护学报, 2021, 41: 327
5 Sarvghad M, Maher S D, Collard D, et al. Materials compatibility for the next generation of concentrated solar power plants [J]. Energy Storage Mater., 2018, 14: 179
6 Martin W R, Weir J R. Influence of chromium content on carburization of chromium-nickel-iron alloys in carbon dioxide [J]. J. Nucl. Mater., 1965, 16: 19
doi: 10.1016/0022-3115(65)90087-5
7 McCoy H E. Type 304 stainless steel vs flowing CO2 at atmospheric pressure and 1100-1800F [J]. Corrosion, 1965, 21: 84
doi: 10.5006/0010-9312-21.3.84
8 Xie Y, Nguyen T D, Zhang J Q, et al. Corrosion behaviour of Ni-Cr alloys in wet CO2 atmosphere at 700 and 800 ℃ [J]. Corros. Sci., 2019, 146: 28
doi: 10.1016/j.corsci.2018.10.029
9 Xie Y, Zhang J Q, Young D J. Temperature effect on oxidation behavior of Ni-Cr alloys in CO2 gas atmosphere [J]. J. Electrochem. Soc., 2017, 164: C285
doi: 10.1149/2.1021706jes
10 Lu J T, Gu Y F. High-temperature steam oxidation behavior of alloys used for key parts of the power plant boiler [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 19
鲁金涛, 谷月峰. 电站锅炉关键部件材料高温蒸汽氧化研究进展 [J]. 中国腐蚀与防护学报, 2014, 34: 19
11 Oleksak R P, Tylczak J H, Holcomb G R, et al. High temperature oxidation of Ni alloys in CO2 containing impurities [J]. Corros. Sci., 2019, 157: 20
doi: 10.1016/j.corsci.2019.05.019
12 Nguyen T D, Zhang J Q, Young D J. Effects of Si, Al and Ti on corrosion of Ni-20Cr and Ni-30Cr alloys in Ar-20CO2-20H2O gas at 700 ℃ [J]. Corros. Sci., 2020, 170: 108702
doi: 10.1016/j.corsci.2020.108702
13 Liang Z Y, Zhao Q X. High temperature oxidation of Fe-Ni-base alloy HR120 and Ni-base alloy HAYNES 282 in steam [J]. Mater. High Temp., 2019, 36: 87
doi: 10.1080/09603409.2018.1465712
14 Gui Y, Liang Z Y, Zhao Q X. Corrosion and carburization behavior of heat-resistant steels in a high-temperature supercritical carbon dioxide environment [J]. Oxid. Met., 2019, 92: 123
doi: 10.1007/s11085-019-09917-x
15 Mahaffey J, Adam D, Brittan A, et al. Corrosion of alloy Haynes 230 in high temperature supercritical carbon dioxide with oxygen impurity additions [J]. Oxid. Met., 2016, 86: 567
doi: 10.1007/s11085-016-9654-8
16 Oleksak R P, Tylczak J H, Holcomb G R, et al. High temperature oxidation of steels in CO2 containing impurities [J]. Corros. Sci., 2020, 164: 108316
doi: 10.1016/j.corsci.2019.108316
17 Pint B A, Lehmusto J, Lance M J, et al. Effect of pressure and impurities on oxidation in supercritical CO2 [J]. Mater. Corros., 2019, 70: 1400
18 Jiang H, Dong J X, Zhang M C, et al. Oxidation behavior and mechanism of inconel 740h alloy for advanced ultra-supercritical power plants between 1050 and 1170 ℃ [J]. Oxid. Met., 2015, 84: 61
doi: 10.1007/s11085-015-9543-6
19 Lu J T, Yang Z, Xu S Q, et al. High temperature oxidation behavior of Inconel alloy 740H in pure steam [J]. Mater. Mech. Eng., 2015, 39(10): 37
鲁金涛, 杨珍, 徐松乾 等. Inconel 740H合金在纯水蒸气环境中的高温氧化行为 [J]. 机械工程材料, 2015, 39(10): 37
20 Xie Y X, Cheng X N, Xu G F, et al. Oxidation behavior of high temperature alloy Inconel 740H in air and water vapor environment [J]. Hot Work. Technol., 2018, 47(14): 55
谢奕心, 程晓农, 徐桂芳 等. 高温合金Inconel 740H在空气和水蒸气环境中的氧化行为 [J]. 热加工工艺, 2018, 47(14): 55
21 Li Y F, Liang Z Y, Deng S F, et al. Corrosion behavior of heat resistant alloys HR6W and 740H in high-temperature carbon dioxide environment [J]. J. Xi'an Jiaotong Univ., 2020, 54(5): 179
李玉峰, 梁志远, 邓世丰 等. 高温CO2环境下耐热合金HR6W和740H的腐蚀行为 [J]. 西安交通大学学报, 2020, 54(5): 179
22 Birks N, Meier G H, Pettit F K, translated by Xin L, Wang W. Introduction to the High-Temperature Oxidation of Metals [M]. 2nd ed. Beijing: Higher Education Press, 2010
Birks N, Meier G H, Pettit F K著, 辛丽, 王文译. 金属高温氧化导论 [M]. 2版. 北京: 高等教育出版社, 2010
23 Liang Z Y, Singh P M, Zhao Q X, et al. High temperature oxidation of newly developed alloy 282 in the flowing-air and steam condition at 900~1100 ℃ [J]. Oxid. Met., 2015, 84: 291
doi: 10.1007/s11085-015-9555-2
24 Liang Z Y, Gui Y, Zhao Q X. High-temperature corrosion behavior of three heat-resistant steels under supercritical carbon dioxide condition [J]. J. Xi'an Jiaotong Univ., 2019, 53(7): 23
梁志远, 桂雍, 赵钦新. 超临界二氧化碳条件下3种典型耐热钢腐蚀特性实验研究 [J]. 西安交通大学学报, 2019, 53(7): 23
25 Deodeshmukh V P, Pint B A. Long-term performance of high temperature alloys in oxidizing environments and supercritical CO2 [A]. Joint EPRI-123HiMAT International Conference on Advances in High Temperature Materials 2019 [C]. Nagasaki, Japan, 2019
26 Yu M, Liang Z Y, Gui Y, et al. Experimental study on high temperature resistance in simulated coal-ash environment of four superalloys for AUSC power plant boilers [J]. Surf. Technol., 2018, 47(6): 8
于淼, 梁志远, 桂雍 等. 4种先进超超临界电站锅炉用高温合金高温腐蚀性能实验研究 [J]. 表面技术, 2018, 47(6): 8
[1] YANG Yong, ZHANG Qingbao, ZHU Wancheng, LUO Yanlong. Effect of Magnetic Field on Corrosion Behavior of X52 Pipeline Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2022, 42(3): 501-506.
[2] ZHANG Keqian, ZHANG Hua, LI Yang, HONG Ye, HE Cheng. Corrosion of Electrode Materials in Joule Heated Melter[J]. 中国腐蚀与防护学报, 2022, 42(3): 458-463.
[3] ZHANG Jian, HUANG Jin, XU Jiapeng, LUO Guoqiang, SHEN Qiang. Corrosion Behavior of Molybdenum in LiF-LiCl-LiBr-Li Molten Salt at 500 ℃[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.
[4] FANG Haojie, QU Hua, YANG Lihui, ZENG Qingya, WANG Lidan, YUAN Ning, HOU Baorong, CAO Lixin, YUAN Xundao. Corrosion Behavior of 9C Series of Powder Metallurgy Al-alloy with High Corrosion Resistance[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[5] LIU Quanbing, LIU Zongde, GUO Shengyang, XIAO Yi. Galvanic Corrosion Behavior of 5083 Al-alloy and 30CrMnSiA Steel in NaCl solutions[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
[6] ZHANG Xin, LIN Muyan, YANG Guangheng, WANG Zehua, SHAO Jia, ZHOU Zehua. Effect of Er on Corrosion Behavior of Marine Engineering 5052 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
[7] QIAO Zhongli, WANG Ling, SHI Yanhua, YANG Zongkui. Microstructure and Corrosion Resistance of Welded Joint of 14Cr1MoR Steel[J]. 中国腐蚀与防护学报, 2021, 41(3): 400-404.
[8] HUANG Tao, XU Chunxiang, YANG Lijing, LI Fuxia, JIA Qinggong, KUAN Jun, ZHANG Zhengwei, WU Xiaofeng, WANG Zhongqi. Effect of Zr Addition on Microstructure and Corrosion Behavior of Mg-3Zn-1Y Alloys[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[9] LI Lin, CHEN Yiqing, GAO Peng, AI Fangfang, ZHONG Bin, SAN Hongyu, YANG Ying. Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[10] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[11] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[12] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[13] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[14] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[15] SU Xiaohong,HU Huie,KONG Xiaodong. Corrosion Behavior of W Particles/Zr41.2Ti13.8Cu12.5Ni10Be22.5 Metallic Glass Matrix Composite in 3%NaCl Solution[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
No Suggested Reading articles found!