Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (4): 621-628    DOI: 10.11902/1005.4537.2021.149
Current Issue | Archive | Adv Search |
Microstructure and Corrosion Evolution of Aerospace AA2024 Al-Alloy Thin Wall Structure Produced Through WAAM
ZHAO Haiyang1,2, GAO Duolong1,2, ZHANG Tong3, LV You3, ZHANG Yupeng3, ZHANG Xinxin3(), SHI Xin1,2, WEI Xiaojing1,2, LIU Dongmei1,2, DONG Zehua3
1.SINOPEC Northwest Company of China Petroleum and Chemical Corporation, Urumqi 830011, China
2.Key Laboratory of Enhanced Oil Recovery in Carbonate Fractured-vuggy Reservoirs, SINOPEC, Urumqi 830011, China
3.School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Download:  HTML  PDF(18031KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure and corrosion behaviour of the wire arc additive manufactured (WAAM) thin wall structure of AA2024 Al-alloy are investigated by means of scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive X-ray spectrometer (EDX), as well as immersion test in 3.5%NaCl solution. Three distinctive areas, including melt pool zone (MPZ), melt pool border (MPB) and heat affected zone (HAZ), were formed in the WAAM structure. S-phase, θ-phase and α-phase are present in all three zones, which could exist individually or in cluster. Localized corrosion tends to initiate at MPB rather than HAZ and MPZ, which is closely associated with the de-alloying behaviour of intermetallic (IM) particles.

Key words:  intermetallic      additive manufacturing      de-alloying      AA2024 Al-alloy      localized corrosion     
Received:  29 June 2021     
ZTFLH:  TG172.5  
Fund: Hubei Provincial Natural Science Foundation of China(2020CFB295);Aeronautical Science Foundation of China(2020Z008079004);National Natural Science Foundation of China(52001128)
Corresponding Authors:  ZHANG Xinxin     E-mail:  xinxinzhang@hust.edu.cn
About author:  ZHANG Xinxin, E-mail: xinxinzhang@hust.edu.cn

Cite this article: 

ZHAO Haiyang, GAO Duolong, ZHANG Tong, LV You, ZHANG Yupeng, ZHANG Xinxin, SHI Xin, WEI Xiaojing, LIU Dongmei, DONG Zehua. Microstructure and Corrosion Evolution of Aerospace AA2024 Al-Alloy Thin Wall Structure Produced Through WAAM. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 621-628.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.149     OR     https://www.jcscp.org/EN/Y2022/V42/I4/621

Fig.1  Schematic diagram of WAAM process
Fig.2  Grain structure of the WAAM thin wall structure after anodizing in Barker's agent
Fig.3  SEM micrographs of the WAAM thin wall structure: (a) general view, (b) MPZ, (c) PMB, (d) HAZ
Fig.4  EDX spectra corresponding to S phase (a), θ phase (c) and α phase (e) and SEM micrographs (corresponding to surface A in Fig.1) along with the corresponding EDX maps from MPZ (b), MPB (d) and HAZ (f) in the thin wall structure
Fig.5  HAADF micrograph (a) and its EDX maps (b) of the multi-phase intermetallics in MPB
Fig.6  Photographs of as-manufactured WAAM thin wall structure after 30 min (a) and 10 h (b) immersion
Fig.7  SEM micrographs of the WAAM thin wall structure after 30 min immersion: surface morphology (a), local magnification of the MPB region (b), cross-section morphology (c) and after 10 h immersion: surface morphology (d), surface morphology with corrosion products removed (e)
Fig.8  HAADF micrograph of the cross section at a typical localized corrosion site in MPB (a), framed area in Fig.8a at increased magnification (b), EDX spectrum (c), high resolution TEM micrograph (d) and electron diffraction of a typical nanoparticle in Fig.8b (e)
1 Ding Q M, Qin Y X, Cui Y Y. Galvanic corrosion of aircraft components in atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 455
丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究 [J]. 中国腐蚀与防护学报, 2020, 40: 455
2 Rioja R J, Liu J. The evolution of Al-Li base products for aerospace and space applications [J]. Metall. Mater. Trans., 2012, 43A: 3325
3 Gong S L, Suo H B, Li H X. Development and application of metal Additive manufacturing technology [J]. Aeronaut. Manuf. Technol., 2013, (13): 66
巩水利, 锁红波, 李怀学. 金属增材制造技术在航空领域的发展与应用 [J]. 航空制造技术, 2013, (13): 66
4 Yang Q, Lu Z L, Huang F X, et al. Research on status and development trend of laser additive manufacturing [J]. Aeronaut. Manuf. Technol., 2016, (12): 26
杨强, 鲁中良, 黄福享 等. 激光增材制造技术的研究现状及发展趋势 [J]. 航空制造技术, 2016, (12): 26
5 Karabin L M, Bray G H, Rioja R J, et al. Al-Li-Cu-Mg-(Ag) products for lower wing skin applications [A]. Proceedings of the 13th International Conference on Aluminum Alloys [C]. Cham, 2012: 529
6 Lin X, Huang W D. High performance metal additive manufacturing technology applied in aviation field [J]. Mater. China, 2015, 34: 684
林鑫, 黄卫东. 应用于航空领域的金属高性能增材制造技术 [J]. 中国材料进展, 2015, 34: 684
7 Williams S W, Martina F, Addison A C, et al. Wire+arc additive manufacturing [J]. Mater. Sci. Technol., 2016, 32: 641
doi: 10.1179/1743284715Y.0000000073
8 Frazier W E. Metal additive manufacturing: a review [J]. J. Mater. Eng. Perform., 2014, 23: 1917
doi: 10.1007/s11665-014-0958-z
9 Gong X B, Anderson T, Chou K, et al. Review on powder-based electron beam additive manufacturing technology [A]. ASME/ISCIE 2012 International Symposium on Flexible Automation [C]. St. Louis, 2012: 507
10 Zhang X X, Lv Y, Tan S H, et al. Microstructure and corrosion be/haviour of wire arc additive manufactured AA2024 alloy thin wall structure [J]. Corros. Sci., 2021, 186: 109453
doi: 10.1016/j.corsci.2021.109453
11 Vimal K E K, Srinivas M N, Rajak S. Wire arc additive manufacturing of aluminium alloys: a review [J]. Mater. Today: Proc., 2021, 41: 1139
12 Wang F D, Williams S, Colegrove P, et al. Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V [J]. Metall. Mater. Trans., 2013, 44A: 968
13 Qiao J S, Xia Z H, Liu L B, et al. Corrosion resistance of aluminum-magnesium bimetal composite material prepared by isothermal indirect extrusion [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 255
乔及森, 夏宗辉, 刘立博 等. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能 [J]. 中国腐蚀与防护学报, 2021, 41: 255
14 Bartkowiak K, Ullrich S, Frick T, et al. New developments of laser processing aluminium alloys via additive manufacturing technique [J]. Phys. Proced., 2011, 12: 393
doi: 10.1016/j.phpro.2011.03.050
15 Yang X Y, Li Y, Zhao P K, et al. Research status and challenges of wire and arc additive manufacturing in material preparation [J]. Weld. Join., 2018, (8): 14
杨笑宇, 李言, 赵鹏康 等. 电弧增材制造技术在材料制备中的研究现状及挑战 [J]. 焊接, 2018, (8): 14
16 Moran T P, Warner D H, Phan N. Scan-by-scan part-scale thermal modelling for defect prediction in metal additive manufacturing [J]. Addit. Manuf., 2021, 37: 101667
17 Plessis A D, Yadroitsava I, Yadroitsev I. Effects of defects on mechanical properties in metal additive manufacturing: a review focusing on X-ray tomography insights [J]. Mater. Design, 2019, 187: 108385
18 Geng R W, Du J, Wei Z Y, et al. Multiscale modelling of microstructure, micro-segregation, and local mechanical properties of Al-Cu alloys in wire and arc additive manufacturing [J]. Addit. Manuf., 2020, 36: 1017
19 Zhang X X, Liu B, Zhou X R, et al. Laser welding introduced segregation and its influence on the corrosion behaviour of Al-Cu-Li alloy [J]. Corros. Sci., 2018, 135: 177
doi: 10.1016/j.corsci.2018.02.044
20 Rafieazad M, Mohammadi M, Nasiri A M. On microstructure and early stage corrosion performance of heat treated direct metal laser sintered AlSi10Mg [J]. Addit. Manuf., 2019, 28: 107
doi: 10.1016/j.addma.2019.04.023
21 Rubben T, Revilla R I, De Graeve I. Influence of heat treatments on the corrosion mechanism of additive manufactured AlSi10Mg [J]. Corros. Sci., 2019, 147: 406
doi: 10.1016/j.corsci.2018.11.038
22 Gharbi O, Jiang D, Feenstra D R, et al. On the corrosion of additively manufactured aluminium alloy AA2024 prepared by selective laser melting [J]. Corros. Sci., 2018, 143: 93
doi: 10.1016/j.corsci.2018.08.019
23 Fathi P, Mohammadi M, Duan X L, et al. A comparative study on corrosion and microstructure of direct metal laser sintered AlSi10Mg_200C and die cast A360.1 aluminum [J]. J. Mater. Process. Tech., 2018, 259: 1
doi: 10.1016/j.jmatprotec.2018.04.013
24 Wang P, Zhang Z D, Song G, et al. Analysis of laser-arc composite additive manufacturing process for aluminum alloy [J]. Weld. Technol., 2016, 45(10): 10
王鹏, 张兆栋, 宋刚 等. 铝合金激光-电弧复合增材制造工艺分析 [J]. 焊接技术, 2016, 45(10): 10
25 Fang X W, Zhang L J, Chen G P, et al. Microstructure evolution of wire-arc additively manufactured 2319 aluminum alloy with interlayer hammering [J]. Mater. Sci. Eng., 2021, 800A: 140168
26 Yoder J K, Griffiths R J, Yu H Z. Deformation-based additive manufacturing of 7075 aluminum with wrought-like mechanical properties [J]. Mater. Design, 2021, 198: 109288
27 Hashimoto T, Zhang X, Zhou X, et al. Investigation of dealloying of S phase (Al2CuMg) in AA 2024-T3 aluminium alloy using high resolution 2D and 3D electron imaging [J]. Corros. Sci., 2016, 103: 157
doi: 10.1016/j.corsci.2015.11.013
28 Zhang X, Hashimoto T, Lindsay J, et al. Investigation of the de-alloying behaviour of θ-phase (Al2Cu) in AA2024-T351 aluminium alloy [J]. Corros. Sci., 2016, 108: 85
doi: 10.1016/j.corsci.2016.03.003
29 Erlebacher J, Aziz M J, Karma A, et al. Evolution of nanoporosity in dealloying [J]. Nature, 2001, 410: 450
doi: 10.1038/35068529
30 Buchheit R G, Grant R P, Hlava P F, et al. Local dissolution phenomena associated with S phase (Al2CuMg) particles in aluminum alloy 2024-T3 [J]. J. Electrochem. Soc., 1997, 144: 2621
doi: 10.1149/1.1837874
31 Boag A, Taylor R J, Muster T H, et al. Stable pit formation on AA2024-T3 in a NaCl environment [J]. Corros. Sci., 2010, 52: 90
doi: 10.1016/j.corsci.2009.08.043
32 Boag A, Hughes A E, Glenn A M, et al. Corrosion of AA2024-T3 part I: localised corrosion of isolated IM particles [J]. Corros. Sci., 2011, 53: 17
doi: 10.1016/j.corsci.2010.09.009
33 Hashimoto T, Curioni M, Zhou X, et al. Investigation of dealloying by ultra-high-resolution nanotomography [J]. Surf. Interface Anal., 2013, 45: 1548
doi: 10.1002/sia.5176
34 Zhou X, Luo C, Hashimoto T, et al. Study of localized corrosion in AA2024 aluminium alloy using electron tomography [J]. Corros. Sci., 2012, 58: 299
doi: 10.1016/j.corsci.2012.02.001
35 Zhang X X, Zhou X R, Hashimoto T, et al. Localized corrosion in AA2024-T351 aluminium alloy: transition from intergranular corrosion to crystallographic pitting [J]. Mater. Charact., 2017, 130: 230
doi: 10.1016/j.matchar.2017.06.022
36 Szklarska-Smialowska Z. Pitting corrosion of aluminum [J]. Corros. Sci., 1999, 41: 1743
doi: 10.1016/S0010-938X(99)00012-8
37 Zhang X X, Jiao Y B, Yu Y, et al. Intergranular corrosion in AA2024-T3 aluminium alloy: the influence of stored energy and prediction [J]. Corros. Sci., 2019, 155: 1
doi: 10.1016/j.corsci.2019.04.031
[1] JIA Yizheng, ZHAO Mingjun, CHENG Shijing, WANG Baojie, WANG Shuo, SHENG Liyuan, XU Daokui. Corrosion Behavior of Mg-Zn-Y-Nd Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[2] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[3] Chao FENG, Bicao PENG, Yi XIE, Jun WANG, Minghuan LI, Tangqing WU, Fucheng YIN. Corrosion Behavior of T91 Steel by Salt Spray with 0.1%NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 583-589.
[4] Penghui ZHANG, Kun PANG, Kangkang DING, Xiangfeng KONG, Xin PENG. Research Progress of Scanning Vibrating Electrode Technique in Field of Corrosion[J]. 中国腐蚀与防护学报, 2017, 37(4): 315-321.
[5] Yao CHEN,Honghua ZHANG,Ganlan YANG,Junhuai XIANG. Influence of Heat Treatment on Microstructure of Composite Coatings of FeAl-Cr3C2[J]. 中国腐蚀与防护学报, 2017, 37(1): 58-62.
[6] Shuzhen ZHAO,Lining XU,Juanjuan DOU,Wei CHANG,Minxu LU. Influence of Acetic Acid on Top Localized Corrosion of X70 Steel Pipeline in CO2 Containing Wet Gas[J]. 中国腐蚀与防护学报, 2016, 36(3): 231-237.
[7] Xiao TANG,Chuntao SHI,Guang CAO,Yan LI. Effect of Coastal Soil Environment on Localized Corrosion for Oil and Gas Pipelines[J]. 中国腐蚀与防护学报, 2016, 36(3): 191-196.
[8] LIU Yu,LI Yan. Research Progress of CO2 Corrosion of Internal Gas Pipeline Steel[J]. 中国腐蚀与防护学报, 2013, 33(1): 1-9.
[9] Shizhen Zhang; Jianting Guo; Weili Ren; Wenlong Zhou. EFFECTS OF RARE EARTH ELEMENTS ON HIGH TEMPERATURE OXIDATION RESISTANCE OF NiAl/CrMo(Hf) ALLOY[J]. 中国腐蚀与防护学报, 2005, 25(2): 110-114 .
[10] Fanjun Meng. Oxidation Behavior of Fe-Al Coatings Produced by High Velocity Arc Spraying at 800℃[J]. 中国腐蚀与防护学报, 2004, 24(6): 368-371 .
[11] . Chemical Changes Within Occluded Cell for Localized Corrosion of Iron Artifacts in Chloride Solution[J]. 中国腐蚀与防护学报, 2004, 24(6): 364-367 .
[12] Yong Shen. High-Temperature Oxidation Resistance of High-Nb TiAl-Based Alloy[J]. 中国腐蚀与防护学报, 2004, 24(4): 203-207 .
[13] . Study on High Temperature Oxidation of Al60Mn13Ti25V2 Intermetallic[J]. 中国腐蚀与防护学报, 2004, 24(3): 129-134 .
[14] Dayang Liu; Kaijin Wei; Wenjun Li. INFLUENCE OF ENVIRONMENTAL FACTORS IN YULIN AREA OFTHE SOUTH CHINA SEA ON LOCALIZED CORROSION OF STEELS[J]. 中国腐蚀与防护学报, 2003, 23(4): 211-216 .
[15] Chunchun Xv; Xiaomei Wu. THE INFLUENCE OF THE LOCAL CORROSION OF 304 STAINLESS STEEL BY ANIONS[J]. 中国腐蚀与防护学报, 2003, 23(3): 129-133 .
No Suggested Reading articles found!