|
|
Microstructure and Corrosion Evolution of Aerospace AA2024 Al-Alloy Thin Wall Structure Produced Through WAAM |
ZHAO Haiyang1,2, GAO Duolong1,2, ZHANG Tong3, LV You3, ZHANG Yupeng3, ZHANG Xinxin3( ), SHI Xin1,2, WEI Xiaojing1,2, LIU Dongmei1,2, DONG Zehua3 |
1.SINOPEC Northwest Company of China Petroleum and Chemical Corporation, Urumqi 830011, China 2.Key Laboratory of Enhanced Oil Recovery in Carbonate Fractured-vuggy Reservoirs, SINOPEC, Urumqi 830011, China 3.School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Abstract The microstructure and corrosion behaviour of the wire arc additive manufactured (WAAM) thin wall structure of AA2024 Al-alloy are investigated by means of scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive X-ray spectrometer (EDX), as well as immersion test in 3.5%NaCl solution. Three distinctive areas, including melt pool zone (MPZ), melt pool border (MPB) and heat affected zone (HAZ), were formed in the WAAM structure. S-phase, θ-phase and α-phase are present in all three zones, which could exist individually or in cluster. Localized corrosion tends to initiate at MPB rather than HAZ and MPZ, which is closely associated with the de-alloying behaviour of intermetallic (IM) particles.
|
Received: 29 June 2021
|
|
Fund: Hubei Provincial Natural Science Foundation of China(2020CFB295);Aeronautical Science Foundation of China(2020Z008079004);National Natural Science Foundation of China(52001128) |
Corresponding Authors:
ZHANG Xinxin
E-mail: xinxinzhang@hust.edu.cn
|
About author: ZHANG Xinxin, E-mail: xinxinzhang@hust.edu.cn
|
Cite this article:
ZHAO Haiyang, GAO Duolong, ZHANG Tong, LV You, ZHANG Yupeng, ZHANG Xinxin, SHI Xin, WEI Xiaojing, LIU Dongmei, DONG Zehua. Microstructure and Corrosion Evolution of Aerospace AA2024 Al-Alloy Thin Wall Structure Produced Through WAAM. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 621-628.
URL:
https://www.jcscp.org/EN/10.11902/1005.4537.2021.149 OR https://www.jcscp.org/EN/Y2022/V42/I4/621
|
1 |
Ding Q M, Qin Y X, Cui Y Y. Galvanic corrosion of aircraft components in atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 455
|
|
丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究 [J]. 中国腐蚀与防护学报, 2020, 40: 455
|
2 |
Rioja R J, Liu J. The evolution of Al-Li base products for aerospace and space applications [J]. Metall. Mater. Trans., 2012, 43A: 3325
|
3 |
Gong S L, Suo H B, Li H X. Development and application of metal Additive manufacturing technology [J]. Aeronaut. Manuf. Technol., 2013, (13): 66
|
|
巩水利, 锁红波, 李怀学. 金属增材制造技术在航空领域的发展与应用 [J]. 航空制造技术, 2013, (13): 66
|
4 |
Yang Q, Lu Z L, Huang F X, et al. Research on status and development trend of laser additive manufacturing [J]. Aeronaut. Manuf. Technol., 2016, (12): 26
|
|
杨强, 鲁中良, 黄福享 等. 激光增材制造技术的研究现状及发展趋势 [J]. 航空制造技术, 2016, (12): 26
|
5 |
Karabin L M, Bray G H, Rioja R J, et al. Al-Li-Cu-Mg-(Ag) products for lower wing skin applications [A]. Proceedings of the 13th International Conference on Aluminum Alloys [C]. Cham, 2012: 529
|
6 |
Lin X, Huang W D. High performance metal additive manufacturing technology applied in aviation field [J]. Mater. China, 2015, 34: 684
|
|
林鑫, 黄卫东. 应用于航空领域的金属高性能增材制造技术 [J]. 中国材料进展, 2015, 34: 684
|
7 |
Williams S W, Martina F, Addison A C, et al. Wire+arc additive manufacturing [J]. Mater. Sci. Technol., 2016, 32: 641
doi: 10.1179/1743284715Y.0000000073
|
8 |
Frazier W E. Metal additive manufacturing: a review [J]. J. Mater. Eng. Perform., 2014, 23: 1917
doi: 10.1007/s11665-014-0958-z
|
9 |
Gong X B, Anderson T, Chou K, et al. Review on powder-based electron beam additive manufacturing technology [A]. ASME/ISCIE 2012 International Symposium on Flexible Automation [C]. St. Louis, 2012: 507
|
10 |
Zhang X X, Lv Y, Tan S H, et al. Microstructure and corrosion be/haviour of wire arc additive manufactured AA2024 alloy thin wall structure [J]. Corros. Sci., 2021, 186: 109453
doi: 10.1016/j.corsci.2021.109453
|
11 |
Vimal K E K, Srinivas M N, Rajak S. Wire arc additive manufacturing of aluminium alloys: a review [J]. Mater. Today: Proc., 2021, 41: 1139
|
12 |
Wang F D, Williams S, Colegrove P, et al. Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V [J]. Metall. Mater. Trans., 2013, 44A: 968
|
13 |
Qiao J S, Xia Z H, Liu L B, et al. Corrosion resistance of aluminum-magnesium bimetal composite material prepared by isothermal indirect extrusion [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 255
|
|
乔及森, 夏宗辉, 刘立博 等. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能 [J]. 中国腐蚀与防护学报, 2021, 41: 255
|
14 |
Bartkowiak K, Ullrich S, Frick T, et al. New developments of laser processing aluminium alloys via additive manufacturing technique [J]. Phys. Proced., 2011, 12: 393
doi: 10.1016/j.phpro.2011.03.050
|
15 |
Yang X Y, Li Y, Zhao P K, et al. Research status and challenges of wire and arc additive manufacturing in material preparation [J]. Weld. Join., 2018, (8): 14
|
|
杨笑宇, 李言, 赵鹏康 等. 电弧增材制造技术在材料制备中的研究现状及挑战 [J]. 焊接, 2018, (8): 14
|
16 |
Moran T P, Warner D H, Phan N. Scan-by-scan part-scale thermal modelling for defect prediction in metal additive manufacturing [J]. Addit. Manuf., 2021, 37: 101667
|
17 |
Plessis A D, Yadroitsava I, Yadroitsev I. Effects of defects on mechanical properties in metal additive manufacturing: a review focusing on X-ray tomography insights [J]. Mater. Design, 2019, 187: 108385
|
18 |
Geng R W, Du J, Wei Z Y, et al. Multiscale modelling of microstructure, micro-segregation, and local mechanical properties of Al-Cu alloys in wire and arc additive manufacturing [J]. Addit. Manuf., 2020, 36: 1017
|
19 |
Zhang X X, Liu B, Zhou X R, et al. Laser welding introduced segregation and its influence on the corrosion behaviour of Al-Cu-Li alloy [J]. Corros. Sci., 2018, 135: 177
doi: 10.1016/j.corsci.2018.02.044
|
20 |
Rafieazad M, Mohammadi M, Nasiri A M. On microstructure and early stage corrosion performance of heat treated direct metal laser sintered AlSi10Mg [J]. Addit. Manuf., 2019, 28: 107
doi: 10.1016/j.addma.2019.04.023
|
21 |
Rubben T, Revilla R I, De Graeve I. Influence of heat treatments on the corrosion mechanism of additive manufactured AlSi10Mg [J]. Corros. Sci., 2019, 147: 406
doi: 10.1016/j.corsci.2018.11.038
|
22 |
Gharbi O, Jiang D, Feenstra D R, et al. On the corrosion of additively manufactured aluminium alloy AA2024 prepared by selective laser melting [J]. Corros. Sci., 2018, 143: 93
doi: 10.1016/j.corsci.2018.08.019
|
23 |
Fathi P, Mohammadi M, Duan X L, et al. A comparative study on corrosion and microstructure of direct metal laser sintered AlSi10Mg_200C and die cast A360.1 aluminum [J]. J. Mater. Process. Tech., 2018, 259: 1
doi: 10.1016/j.jmatprotec.2018.04.013
|
24 |
Wang P, Zhang Z D, Song G, et al. Analysis of laser-arc composite additive manufacturing process for aluminum alloy [J]. Weld. Technol., 2016, 45(10): 10
|
|
王鹏, 张兆栋, 宋刚 等. 铝合金激光-电弧复合增材制造工艺分析 [J]. 焊接技术, 2016, 45(10): 10
|
25 |
Fang X W, Zhang L J, Chen G P, et al. Microstructure evolution of wire-arc additively manufactured 2319 aluminum alloy with interlayer hammering [J]. Mater. Sci. Eng., 2021, 800A: 140168
|
26 |
Yoder J K, Griffiths R J, Yu H Z. Deformation-based additive manufacturing of 7075 aluminum with wrought-like mechanical properties [J]. Mater. Design, 2021, 198: 109288
|
27 |
Hashimoto T, Zhang X, Zhou X, et al. Investigation of dealloying of S phase (Al2CuMg) in AA 2024-T3 aluminium alloy using high resolution 2D and 3D electron imaging [J]. Corros. Sci., 2016, 103: 157
doi: 10.1016/j.corsci.2015.11.013
|
28 |
Zhang X, Hashimoto T, Lindsay J, et al. Investigation of the de-alloying behaviour of θ-phase (Al2Cu) in AA2024-T351 aluminium alloy [J]. Corros. Sci., 2016, 108: 85
doi: 10.1016/j.corsci.2016.03.003
|
29 |
Erlebacher J, Aziz M J, Karma A, et al. Evolution of nanoporosity in dealloying [J]. Nature, 2001, 410: 450
doi: 10.1038/35068529
|
30 |
Buchheit R G, Grant R P, Hlava P F, et al. Local dissolution phenomena associated with S phase (Al2CuMg) particles in aluminum alloy 2024-T3 [J]. J. Electrochem. Soc., 1997, 144: 2621
doi: 10.1149/1.1837874
|
31 |
Boag A, Taylor R J, Muster T H, et al. Stable pit formation on AA2024-T3 in a NaCl environment [J]. Corros. Sci., 2010, 52: 90
doi: 10.1016/j.corsci.2009.08.043
|
32 |
Boag A, Hughes A E, Glenn A M, et al. Corrosion of AA2024-T3 part I: localised corrosion of isolated IM particles [J]. Corros. Sci., 2011, 53: 17
doi: 10.1016/j.corsci.2010.09.009
|
33 |
Hashimoto T, Curioni M, Zhou X, et al. Investigation of dealloying by ultra-high-resolution nanotomography [J]. Surf. Interface Anal., 2013, 45: 1548
doi: 10.1002/sia.5176
|
34 |
Zhou X, Luo C, Hashimoto T, et al. Study of localized corrosion in AA2024 aluminium alloy using electron tomography [J]. Corros. Sci., 2012, 58: 299
doi: 10.1016/j.corsci.2012.02.001
|
35 |
Zhang X X, Zhou X R, Hashimoto T, et al. Localized corrosion in AA2024-T351 aluminium alloy: transition from intergranular corrosion to crystallographic pitting [J]. Mater. Charact., 2017, 130: 230
doi: 10.1016/j.matchar.2017.06.022
|
36 |
Szklarska-Smialowska Z. Pitting corrosion of aluminum [J]. Corros. Sci., 1999, 41: 1743
doi: 10.1016/S0010-938X(99)00012-8
|
37 |
Zhang X X, Jiao Y B, Yu Y, et al. Intergranular corrosion in AA2024-T3 aluminium alloy: the influence of stored energy and prediction [J]. Corros. Sci., 2019, 155: 1
doi: 10.1016/j.corsci.2019.04.031
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|