Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (6): 883-891    DOI: 10.11902/1005.4537.2020.184
Current Issue | Archive | Adv Search |
Galvanic Corrosion Behavior of 5083 Al-alloy and 30CrMnSiA Steel in NaCl solutions
LIU Quanbing, LIU Zongde(), GUO Shengyang, XIAO Yi
Key Laboratory of Power Station Energy Transfer Conversion and System, Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
Download:  HTML  PDF(10965KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The galvanic corrosion behavior of the couple of 5083Al-alloy and 30CrMnSiA steel in 0.05, 0.1, 0.6 and 0.85 mol/L NaCl solutions was studied by means of immersion test, corrosion morphology observation, corrosion products analysis and electrochemical measurements, while the corrosion mechanism of the galvanic couple in 0.6 mol/L NaCl solution was specially examined. The results showed that the galvanic current density of the galvanic couple in 0.1 mol/L NaCl solution was greater, while that in 0.85 mol/L NaCl solution was the lowest. In the case of 0.85 mol/L NaCl solution, the activity of Cl- was weakened and the dissolved oxygen content decreases, hence the cathode reaction rate decreases. The results of potentiodynamic polarization curve and electrochemical impedance spectroscopy measurements demonstrate that the corrosion resistance of Al-alloy decreased at first and then increased during the galvanic corrosion process, the dissolution of Al-alloy was inhibited by the corrosion products formed on its surface. The corrosion rate of the steel was low at the early stage as cathode, and then the corrosion rate increased gradually with the increase of time. After immersion for 15 d, the corrosion products of steel participated in the cathodic reaction and therewith accelerated the rate of charge transfer, resulting in a decrease in the corrosion resistance of Al-alloy and steel, while their corrosion rate increased substantially.

Key words:  5083Al-alloy      30CrMnSiA steel      galvanic corrosion      concentration of Cl-      corrosion behavior     
Received:  06 October 2020     
ZTFLH:  TG172  
Fund: General Projects of Equipment Pre-research Foundation(61409220202)
Corresponding Authors:  LIU Zongde     E-mail:  lzd@ncepu.edu.cn
About author:  LIU Zongde, E-mail: lzd@ncepu.edu.cn

Cite this article: 

LIU Quanbing, LIU Zongde, GUO Shengyang, XIAO Yi. Galvanic Corrosion Behavior of 5083 Al-alloy and 30CrMnSiA Steel in NaCl solutions. Journal of Chinese Society for Corrosion and protection, 2021, 41(6): 883-891.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.184     OR     https://www.jcscp.org/EN/Y2021/V41/I6/883

MaterialMgSiFeCuMnCrZnTiAlCPNiMo
5083 Al-alloy4.210.260.430.050.290.130.009---Bal.------------
30CrMnSiA---1.02Bal.0.030.920.96---0.017---0.310.010.040.05
Table 1  Chemical compositions of 5083 Al-alloy and 30CrMnSiA steel
Fig.1  Macroscopic morphologies of the couple of 5083 Al-alloy and 30CrMnSiA steel after 1 d immersion in NaCl solutions with the Cl- concentrations of 0.05 mol/L (a), 0.1 mol/L (b), 0.6 mol/L (c) and 0.85 mol/L (d)
Fig.2  SEM surface morphologies of 5083Al-alloy in the couple after 1 d immersion in NaCl solutions with the Cl- concentrations of 0.05 mol/L (a), 0.1 mol/L (b), 0.6 mol/L (c) and 0.85 mol/L (d)
Fig.3  SEM surface morphologies of 5083Al-alloy (a~d) and 30CrMnSiA steel in the couple (e~h) after 15 d immersion in NaCl solutions with the Cl- concentrations of 0.05 mol/L (a, e); 0.1 mol/L (b, f); 0.6 mol/L (c, g) and 0.85 mol/L (d, h)
Concentration / mol/LMgAlCl
0.051.4867.672.77
0.10.1143.801.85
0.6---48.238.02
0.85---54.534.60
Table 2  EDS analysis results of the corrosion products formed on 5083Al-alloy in the couple after 15 d immersion in the NaCl solutions with different concentrations (mass fraction / %)
Fig.4  XRD patterns of the corrosion products formed on 5083Al-alloy (a) and 30CrMnSiA steel (b) after 15 d immersion in the NaCl solutions with different concentrations
Fig.5  Open circuit potential cures of 5083Al-alloy and 30CrMnSiA steel in 0.6 mol/L NaCl solution
Fig.6  Potentiodynamic polarization cures of 5083Al-alloy (a) and 30CrMnSiA steel (b) in NaCl solutions with different concentrations
Concentration mol/LEcorr / mVSCEIcorr / μA·cm-2Epit / mVSCE
AlSteelAlSteelAlSteel
0.05-789-5560.3519.19-660---
0.1-776-5070.5719.49-700---
0.6-858-4521.0523.33-754---
0.85-733-5990.6316.07------
Table 3  Fitting electrochemical parameters of 5083Al-alloy and 30CrMnSiA steel in NaCl solutions with different concentrations
Fig.7  Galvanic current densities (a) and pH values (b) of 5083Al-alloy and 30CrMnSiA steel couple during immersion in NaCl solutions with different concentrations
Fig.8  Potentiodynamic polarization cures of 5083 Al-alloy (a) and 30CrMnSiA steel (b) after immersion in 0.6 mol/L NaCl solution for different time
MaterialIcorr / μA·cm-2-Ecorr / mVSCE
1 d5 d7 d10 d15 d1 d5 d7 d10 d15 d
30CrMnSiA4.405.077.339.2815.67617606635643640
5083 Al0.312.371.440.510.07841892928881836
Table 4  Fitting electrochemical parameters of 5083 Al-alloy and 30CrMnSiA steel after immersion in 0.6 mol/L NaCl solution for different time
Fig.9  Nyquist (a, b) and Bode (c, d) plots of the galvanic coupling of 5083 Al-alloy (a, c) and 30CrMnSiA steel (b, d) after immersion in 0.6 mol/L NaCl solution for different time
Fig.10  Equivalent circuit models of EIS of 5083Al-alloy and 30CrMnSiA steel (a) Initial stage for 5083 Al-alloy, (b) final stage for 5083 Al-alloy, (c) for 30CrMnSiA steel
Time dRsΩ·cm2Yo,1S sn·cm-2·105n1RctΩ·cm2Yo,2S sn·cm-2·10-3n2Yo,1S sn·cm-2·10-4RfΩ·cm2CbμF·cm-2RbkΩ·cm2CdlμF·cm-2
12.0772.2890.94133901.150.72---------------
53.0992.9810.88310017.660.92---------------
73.3552.4790.9243172.930.45---------------
101.7732.660.9270601.670.62---------------
1584.56---0.552072------1.703339294.522.52378.8
Table 5  Fitting equivalent circuit parameters of EIS of 5083 Al-alloy immersed for different time
Time dRsΩ·cm2CdlμF·cm-2RfΩ·cm2Yo,1S sn·cm-2·10-4n1RctΩ·cm2
14.187565.9509.300.751311
58.539415.5108.741.230.793003
79.151555.326.3974.450.752483
101.675387.613.7245.520.712135
151.675844.313.41121.90.721871
Table 6  Fitting equivalent circuit parameters of EIS of 30CrMnSiA steel immersed for different time
1 Zaid B, Saidi D, Benzaid A, et al. Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy [J]. Corros. Sci., 2008, 50: 1841
2 Knight S P, Salagaras M, Trueman A R. The study of intergranular corrosion in aircraft aluminium alloys using X-ray tomography [J]. Corros. Sci., 2011, 53: 727
3 Lee H, Kim Y, Jeong Y, et al. Effects of testing variables on stress corrosion cracking susceptibility of Al 2024-T351 [J]. Corros. Sci., 2012, 55: 10
4 El-Dahshan M E, El Din A M S, Haggag H H. Galvanic corrosion in the systems titanium/316 L stainless steel/Al brass in Arabian Gulf water [J]. Desalination, 2002, 142: 161
5 Varela F E, Kurata Y, Sanada N. The influence of temperature on the galvanic corrosion of a cast iron-stainless steel couple (prediction by boundary element method) [J]. Corros. Sci., 1997, 39: 755
6 Liu Y J, Wang Z Y, Wang B B, et al. Mechanism of galvanic corrosion of coupled 2024 Al-alloy and 316L stainless steel beneath a thin electrolyte film studied by real-time monitoring technologies [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 261
刘艳洁, 王振尧, 王彬彬等. 实时监测技术研究薄液膜下电偶腐蚀的机理 [J]. 中国腐蚀与防护学报, 2017, 37: 261
7 Ding Q M, Qin Y X, Cui Y Y. Galvanic corrosion of aircraft components in atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 455
丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究 [J]. 中国腐蚀与防护学报, 2020, 40: 455
8 Li T, Dong C F, Li X G, et al. Influence of environmental factors on atmospheric corrosion of aluminum alloys and its dynamic time dependence [J]. Corros. Sci., 2009, 30: 215
李涛, 董超芳, 李晓刚等. 环境因素对铝合金大气腐蚀的影响及其动态变化规律研究 [J]. 腐蚀与防护, 2009, 30: 215
9 Sun F L, Li X G, Lu L, et al. Corrosion behavior of 5052 and 6061 aluminum alloys in deep ocean environment of South China Sea [J]. Acta Metall. Sin., 2013, 49: 1219
孙飞龙, 李晓刚, 卢琳等. 5052和6061铝合金在中国南海深海环境下的腐蚀行为研究 [J]. 金属学报, 2013, 49: 1219
10 Zhu H M, Zheng Q F, Xie S S. Study on atmospheric corrosion of aluminium and its alloy at different distance away from seashore in wannine maring environments [J]. Chin. J. Rare Met., 2002, 26: 456
朱红嫚, 郑弃非, 谢水生. 万宁地区铝及铝合金不同距海点的大气腐蚀研究 [J]. 稀有金属, 2002, 26: 456
11 Hu J Z, Liu Q B, Hu H H, et al. Cl- sedimentation rate in atmosphere of tropical island [J]. Corros. Prot., 2018, 39: 463
胡杰珍, 刘泉兵, 胡欢欢等. 热带海岛大气中氯离子沉降速率 [J]. 腐蚀与防护, 2018, 39: 463
12 Chen Y L, Zhao H J, Wang C G, et al. Short-term electrochemical corrosion behavior of 7B04 aluminum alloy and 30CrMnSiA Steel [J]. Equip. Environ. Eng., 2018, 15(1): 34
陈跃良, 赵红君, 王晨光等. 7B04铝合金和30CrMnSiA钢短期腐蚀的电化学行为研究 [J]. 装备环境工程, 2018, 15(1): 34
13 Palani S, Hack T, Deconinck J, et al. Validation of predictive model for galvanic corrosion under thin electrolyte layers: An application to aluminium 2024-CFRP material combination [J]. Corros. Sci., 2014, 78: 89
14 Yao X, Cai C, Li J F, et al. Early stage galvanic corrosion of 5383Al alloy coupled with 907 steel and aluminum bronze in 3.5% NaCl solution [J]. Corros. Sci. Prot. Technol., 2015, 27: 419
姚希, 蔡超, 李劲风等. 5383铝合金与907钢和铝青铜早期电偶腐蚀的平面分布 [J]. 腐蚀科学与防护技术, 2015, 27: 419
15 Tamura H. The role of rusts in corrosion and corrosion protection of iron and steel [J]. Corros. Sci., 2008, 50: 1872
16 Li W J. Study of the catalytic and cooperating action of Fe(Ⅱ) in the process of transformation from Fe(OH)2 to γ-FeOOH [D]. Shijiazhuang: Hebei Normal University, 2005
李文君. Fe(Ⅱ) 在空气氧化Fe(OH)2形成γ-FeOOH过程中的协同催化作用 [D]. 石家庄: 河北师范大学, 2005
17 Yan M C, Sun C, Xu J, et al. Role of Fe oxides in corrosion of pipeline steel in a red clay soil [J]. Corros. Sci., 2014, 80: 309
18 Hao L, Zhang S X, Dong J H, et al. Evolution of corrosion of MnCuP weathering steel submitted to wet/dry cyclic tests in a simulated coastal atmosphere [J]. Corros. Sci., 2012, 58: 175
[1] FANG Haojie, QU Hua, YANG Lihui, ZENG Qingya, WANG Lidan, YUAN Ning, HOU Baorong, CAO Lixin, YUAN Xundao. Corrosion Behavior of 9C Series of Powder Metallurgy Al-alloy with High Corrosion Resistance[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[2] YANG Sheng, ZHANG Huijie, XIANG Wuyuan, OUYANG Tao, XIAO Fen, ZHOU Hui. Effect of Post Surface Treatment of Micro-arc Oxidation Films/TC4 Ti-alloy on Their Morphology and Galvanic Corrosion Performance[J]. 中国腐蚀与防护学报, 2021, 41(6): 905-908.
[3] ZHANG Xin, LIN Muyan, YANG Guangheng, WANG Zehua, SHAO Jia, ZHOU Zehua. Effect of Er on Corrosion Behavior of Marine Engineering 5052 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
[4] LV Xianghong, MA Xiaofeng, HU Zhaowei, LI Yuanyuan, WANG Chen. Corrosion Behavior of T/S-52K Straight Seam Pipeline Steel in Solutions of Different NaCl Concentration[J]. 中国腐蚀与防护学报, 2021, 41(4): 555-559.
[5] QIAO Zhongli, WANG Ling, SHI Yanhua, YANG Zongkui. Microstructure and Corrosion Resistance of Welded Joint of 14Cr1MoR Steel[J]. 中国腐蚀与防护学报, 2021, 41(3): 400-404.
[6] CANG Yu, HUANG Yuhui, WENG Shuo, XUAN Fuzhen. Effect of Environmental Variables on Galvanic Corrosion Performance of Welded Joint of Nuclear Steam Turbine Rotor[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[7] ZUO Yong, QIN Yueqiang, SHEN Miao, YANG Xinmei. Effect of Cr2+/Cr3+ on Galvanic Corrosion Inhibition of Dissimilar Metallic Materials in 46.5%LiF-11.5%NaF-42.0%KF Molten Salts System[J]. 中国腐蚀与防护学报, 2021, 41(3): 341-345.
[8] HUANG Tao, XU Chunxiang, YANG Lijing, LI Fuxia, JIA Qinggong, KUAN Jun, ZHANG Zhengwei, WU Xiaofeng, WANG Zhongqi. Effect of Zr Addition on Microstructure and Corrosion Behavior of Mg-3Zn-1Y Alloys[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[9] LI Lin, CHEN Yiqing, GAO Peng, AI Fangfang, ZHONG Bin, SAN Hongyu, YANG Ying. Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[10] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[11] DING Qingmiao, QIN Yongxiang, CUI Yanyu. Galvanic Corrosion of Aircraft Components in Atmospheric Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[12] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[13] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[14] YI Hongwei, HU Huihui, CHEN Changfeng, JIA Xiaolan, HU Lihua. Corrosion Behavior and Corrosion Inhibition of Dissimilar Metal Welds for X65 Steel in CO2-containing Environment[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[15] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
No Suggested Reading articles found!