Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (2): 81-86    DOI: 10.11902/1005.4537.2019.018
Current Issue | Archive | Adv Search |
Review on Research Status of Common Liquid Metal Corrosion in Liquid Metal Energy Storage Batteries
LIU Wei1,2, DU Kaifa1,2, HU Xiaohong3, WANG Dihua1,2()
1 School of Resource and Environmental Science, Wuhan University,Wuhan 430072, China
2 International Cooperation Base for Sustainable Utilization of Resources and Energy in Hubei Province, Wuhan 430072, China
3 College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, China
Download:  HTML  PDF(588KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The research progress of the corrosion of structural metal-materials in liquid metals, such as Bi and Sb, the positive electrode materials and Li, the negative electrode material used for the liquid metal energy storage battery is briefly reviewed, while the research results of liquid metal corrosion in the field of atomic energy reactors in recent years were also taken into account. Issues related with this topic, including the corrosion phenomena, corrosion mechanism and corrosion influencing factors of metal materials in liquid Li, Bi and Sb are summarized, and finally proposals to prevent corrosion of liquid metal are put forward.

Key words:  liquid metal battery      liquid electrode      corrosion      protection     
Received:  22 January 2019     
ZTFLH:  TM912  
Fund: National Key R&D Program of China(2018YFB0905600)
Corresponding Authors:  WANG Dihua     E-mail:  wangdh@whu.edu.cn

Cite this article: 

LIU Wei, DU Kaifa, HU Xiaohong, WANG Dihua. Review on Research Status of Common Liquid Metal Corrosion in Liquid Metal Energy Storage Batteries. Journal of Chinese Society for Corrosion and protection, 2020, 40(2): 81-86.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.018     OR     https://www.jcscp.org/EN/Y2020/V40/I2/81

[1] Bradwell D J, Kim H, Sirk A H C, et al. Magnesium-antimony liquid metal battery for stationary energy storage [J]. J. Am. Chem. Soc., 2012, 134: 1895
[2] Ning X N, Phadke S, Chung B, et al. Self-healing Li-Bi liquid metal battery for grid-scale energy storage [J]. J. Power Sources, 2015, 275: 370
[3] Bradwell D J, Kim H, Sirk A H C, et al. Magnesium-antimony liquid metal battery for stationary energy storage [J]. J. Am. Chem. Soc., 2012, 134: 1895
[4] Wang K Q, Jiang K, Chung B, et al. Lithium-antimony-lead liquid metal battery for grid-level energy storage [J]. Nature, 2014, 514: 348
[5] Li H M, Wang K L, Cheng S J, et al. High performance liquid metal battery with environmentally friendly antimony-tin positive electrode [J]. ACS Appl. Mater. Interfaces, 2016, 8: 12830
[6] Liu S X, Li P J, Zeng D B. Research progress of liquid metal induced corrosion [J]. Corros. Sci. Prot. Technol., 2001, 13: 275
(刘树勋, 李培杰, 曾大本. 液态金属腐蚀的研究进展 [J]. 腐蚀科学与防护技术, 2001, 13: 275)
[7] Wang M Y, Wang H, Zhang K. Research on corrosion and protection technology of liquid metal [J]. Adv. Mater. Ind., 2015, (11): 60
(王梦雨, 王辉, 张康. 液态金属腐蚀与防护技术研究 [J]. 新材料产业, 2015, (11): 60)
[8] Benamati G, Buttol P, Imbeni V, et al. Behaviour of materials for accelerator driven systems in stagnant molten lead [J]. J. Nucl. Mater., 2000, 279: 308
[9] Zhu Q, Chen Z X, Li W W. Corrosion of lithium to materials and choice of boiler reactor structure material [J] Chem. Defence Ships, 2011, (4): 16
(朱强, 陈支厦, 李维维. 锂对材料的腐蚀及锅炉反应器结构材料的选择 [J]. 舰船防化, 2011, (4): 16)
[10] Ouchi T, Sadoway D R. Positive current collector for Li||Sb-Pb liquid metal battery [J]. J. Power Sources, 2017, 357: 158
[11] Zhang J S. A review of steel corrosion by liquid lead and lead-bismuth [J]. Corros. Sci., 2009, 51: 1207
[12] Park J J, Butt D P, Beard C A. Review of liquid metal corrosion issues for potential containment materials for liquid lead and lead-bismuth eutectic spallation targets as a neutron source [J]. Nucl. Eng. Des., 2000, 196: 315
[13] Tsisar V, Kondo M, Xu Q, et al. Effect of nitrogen on the corrosion behavior of RAFM JLF-1 steel in lithium [J]. J. Nucl. Mater., 2011, 417: 1205
[14] Fazio C, Benamati G, Martini C, et al. Compatibility tests on steels in molten lead and lead-bismuth [J]. J. Nucl. Mater., 2001, 296: 243
[15] Tortorelli P F, Chopra O K. Corrosion and compatibility considerations of liquid metals for fusion reactor applications [J]. J. Nucl. Mater., 1981, 103: 621
[16] Meng X C, Zuo G Z, Ren J, et al. Study of the corrosion behaviors of 304 austenite stainless steel specimens exposed to static liquid lithium at 600 K [J]. J. Nucl. Mater., 2016, 480: 25
[17] Tsisar V, Kondo M, Muroga T, et al. Structural and compositional transformations in the near-surface layers of Fe-Cr based steels exposed to lithium-Effect of alloying and corrosion-assisted substructure coarsening [J]. Corros. Sci., 2011, 53: 441
[18] Chopra O K, Smith D L. Influence of temperature and lithium purity on corrosion of ferrous alloys in a flowing lithium environment [J]. J. Nucl. Mater., 1986, 141-143: 584
[19] Qian J P, Chen J M, Chen J B, et al. Corrosion of austenitic stainless steel in liquid lithium [J]. J. Nucl. Mater., 1991, 179-181: 603
[20] Jiang K, Li C H, Wang K L, et al. Corrosion-resistant sealed insulation device and well high temperature energy storage battery [P]. Chin Pat, 205960043U, 2017
(蒋凯, 黎朝晖, 王康丽等. 耐腐蚀密封绝缘装置及中高温储能电池 [P]. 中国专利, 205960043U, 2017)
[21] Guo Z H, Huang Q Y, Yan Z L, et al. Compatibility of atmospheric plasma sprayed Al2O3 coatings on CLAM with liquid LiPb [J]. Fusion Eng. Des., 2010, 85: 1469
[22] Pint B A, More K L. Transformation of Al2O3 to LiAlO2 in Pb-17Li at 800 ℃ [J]. J. Nucl. Mater., 2008, 376: 108
[23] Nagura M, Suzuki A, Terai T. Corrosion prevention of Er2O3 by O control in Li [J]. J. Nucl. Mater., 2011, 417: 1210
[24] Mustari A P A, Takahashi M. Metallurgical analysis of corroded bellows of bellow-sealed valve in lithium flow system [J]. Fus. Eng. Des., 2013, 88: 202
[25] Meng X C, Zuo G Z, Xu W, et al. Effect of temperature on the corrosion behaviors of 304 stainless steel in static liquid lithium [J]. Nucl. Eng. Des., 2018, 128: 75
[26] Kondo M, Muroga T, Nagasaka T, et al. Mass transfer of RAFM steel in Li by simple immersion, impeller induced flow and thermal convection [J]. J. Nucl. Mater., 2011, 417: 1200
[27] Furukawa T, Hirakawa Y, Kato S. Corrosion of austenitic steel in leakage lithium [J]. Fus. Eng. Des., 2013, 88: 2502
[28] Shu L, Cao Z, Xia W X, et al. Corrosion behavior of 316L stainless steel in stagnating liquid lithium [J]. Nucl. Fusion Plasma Phys., 2017, 37: 336
(舒磊, 曹智, 夏文星等. 316L不锈钢在静态液态锂中的腐蚀行为研究 [J]. 核聚变与等离子体物理, 2017, 37: 336)
[29] Horsley G W, Maskrey J T. The corrosion of 2.25Cr-1Mo steel by liquid bismuth [J]. J. Iron Steel Inst., 1958, 189: 139
[30] Deville R E, Foley W R. Liquid metal fuel reactor experiment; Liquid bismuth dynamic corrosion tests [R]. Alliance, Ohio: Babcock and Wilcox Co. Research Center, 1960
[31] Dawe D W, Parry G W, Wilson G W. A study of the compatibility of some creep-resistant steels with liquid bismuth in nonisothermal systems [J]. J. Brit. Nuclear Energy Conf., 1960, 5: 24
[32] James J A, Trotman J. Corrosion of steels in liquid bismuth and lead [J]. J. Iron Steel Inst., 1960, 3: 319
[33] Yunoshin I Y I, Nishino K. Corrosion of carbon steel by liquid bismuth [R]. Science Reports of the Research Institutes,University Tohoku. Ser. A, Physics, chemistry and metallurgy, 1963, 15: 186
[34] Poizeau S, Kim H, Newhouse J M, et al. Determination and modeling of the thermodynamic properties of liquid calcium-antimony alloys [J]. Electrochim. Acta, 2012, 76: 8
[35] Matej J, Hulínský V. Corrosion of molybdenum by molten antimony [A]. In: Bishay A. Recent Advances in Science and Technology of Materials [M]. Boston, MA: Springer, 1974: 339
[36] Li H M. Study on energy storage materials and technologies based on molten salt electrochemistry [D]. Wuhan: Huazhong University of Science & Technology, 2016
(李浩秒. 基于熔盐电化学的新型储能材料与技术研究 [D]. 武汉: 华中科技大学, 2016)
[37] Müller G, Schumacher G, Zimmermann F. Investigation on oxygen controlled liquid lead corrosion of surface treated steels [J]. J. Nucl. Mater., 2000, 278: 85
[38] Tsipas D N, Triantafyllidis G K, Kiplagat J K, et al. Degradation behaviour of boronized carbon and high alloy steels in molten aluminium and zinc [J]. Mater. Lett., 1998, 37: 128
[39] Weeks J R, Klamut C J. Reactions between steel surfaces and zirconium in liquid bismuth [J]. Nucl. Sci. Eng., 1960, 8: 133
[40] Ilinčev G. Research results on the corrosion effects of liquid heavy metals Pb, Bi and Pb-Bi on structural materials with and without corrosion inhibitors [J]. Nucl. Eng. Des., 2002, 217: 167
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!