Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (2): 106-113    DOI: 10.11902/1005.4537.2018.023
Current Issue | Archive | Adv Search |
Corrosion Property of Nuclear Grade 316LN Stainless Steel Weld Joint in High Temperature and High Pressure Water
Zhaodeng LI,Zhendong CUI,Xiangyu HOU,Lili GAO,Weizhen WANG(),Jianhua YIN
The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources, Tianjin 300192, China
Download:  HTML  PDF(15506KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion performance of weld joints of nuclear grade stainless steel in high temperature and high pressure water was investigated by means of mass change measurement, scanning electron microscope (SEM), X-ray diffractometer (XRD) and X-ray photoelectron spectroscopy (XPS). The results showed that, in the initial stage before 340 h, the weld joints suffered from mass loss with a relative high rate, then the mass loss turned to decrease gradually, finally the weld joint exhibited a little mass gain when the test reached 1080 h and hereafter the mass gain kept at a stale level. The oxide scale formed on the weld joints consisted of FeOOH, FeCr2O4 and Fe3O4 primarily. In conclusion, the weld seam of 316LN stainless steel exhibited an equivalent resistance to uniform corrosion as the base metal.

Key words:  stainless steel      weld joint      corrosion      high temperature and pressure water      XPS     
Received:  07 February 2018     
ZTFLH:  TG142.71  
Fund: Supported by National Key R&D Program of China(2017YFC0404100);Special Fund of the State Reree-science Arcl Research Institude(K-JBYWF-2016-G4);Special Fund of the State Reree-science Arcl Research Institude(K-JBYWF-2016-T04)
Corresponding Authors:  Weizhen WANG     E-mail:  wangweizhen1628@163.com

Cite this article: 

Zhaodeng LI,Zhendong CUI,Xiangyu HOU,Lili GAO,Weizhen WANG,Jianhua YIN. Corrosion Property of Nuclear Grade 316LN Stainless Steel Weld Joint in High Temperature and High Pressure Water. Journal of Chinese Society for Corrosion and protection, 2019, 39(2): 106-113.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2018.023     OR     https://www.jcscp.org/EN/Y2019/V39/I2/106

MaterialCCrNiMoNMnSSiFe
316LN0.02017.610.82.020.111.160.0040.41Bal.
ER316L0.01718.610.72.740.051.300.0070.42Bal.
Table 1  Chemical compositions of weld and base metal
Fig.1  Cross-section overall appearance of 316LN stainless steel weld joint and sample cutting position
Fig.2  Optical (a, b) and local orientation mismatch (c, d) images of base metal (a, c) and weld metal (b, d) in 316LN stainless steel weld joint, respectively
Fig.3  Mass gain (a) and mass gain rate (b) of 316LN stainles steel weld joint
Fig.4  SEM images of typical surface morphologies of the oxide films formed on the 316LN stainles steel weld joint after corrosion for 50 h (a), 200 h (b), 360 h (c), 760 h (d), 1080 h (e) and 1440 h (f)
Fig.5  Surface morphologies of the oxide films formed on base metal (a, c) and weld metal (b, d) after corrosion for 360 h (a, b) and 1440 h (b, d)
Positions in Fig.5FeCrNiMo
143.8613.158.330.84
239.4913.046.530.96
335.887.561.57---
433.344.004.16---
Table 2  Chemical compositions of oxide particles marked in Fig.5
Fig.6  XRD patterns of weld and base metals of 316LN stainless steel weld joint after corrosion for different time
Fig.7  XPS fine spectra of Fe (a), Cr (b), Ni (c) and Mo (d) of the oxide films formed on weld and base metals of 316LN weld joint after corrosion for 360 h
Fig.9  XPS fine spectra of the oxide films formed on weld and base metals of 316LN weld joint after corrosion for 360 h (a) and 1440 h (b)
Fig.8  XPS fine spectra of Fe (a), Cr (b), Ni (c) and Mo (d) of the oxide films formed on weld and base metals of 316LN weld joint after 1440 h immersion
[1] Lu H X. Research and development of AP1000 reactor coolant pipe in China [J]. Shanghai Met., 2010, 32(4): 29
[1] 卢华兴. AP1000核电站主管道国产化研制进展 [J]. 上海金属, 2010, 32(4): 29)
[2] Wang Y Q, Yang B, Wu H C, et al. Uncovered the truth of nuclear power material-materials of primary coolant pipe in nuclear power plants and their processing [J]. Met. Word, 2013, (1): 37
[2] 王永强, 杨滨, 武焕春等. 揭秘核电材料-核电站一回路主管道材料及其制备工艺 [J]. 金属世界, 2013, (1): 37)
[3] Zuo B, Yu Y. The use of hot wire TIG narrow-gap welding in the welding of AP1000 main pipe [A]. Progress Report on China Nuclear Science & Technology [C]. Guiyang, 2011
[3] 左波, 余燕. 热丝TIG窄间隙焊在AP1000主管道焊接中的应用[A].中国核学会2011年学术年会论文集 [C]. 贵阳, 2011
[4] Ma C, Peng Q J, Han E-H, et al. Review of stress corrosion cracking of structural materials in nuclear powerplants [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 37
[4] 马成, 彭群家, 韩恩厚等. 核电结构材料应力腐蚀开裂的研究现状与进展 [J]. 中国腐蚀与防护学报, 2014, 34: 37
[5] Lydell B, Riznic J. OPDE—The international pipe failure data exchange project [J]. Nucl. Eng. Des., 2008, 238: 2115
[6] Gao X, Wu X Q, Guan H, et al. Progress in study on corrosion scale formed in high-temperature and high-pressure water [J].Corros. Sci. Prot. Technol., 2007, 19: 110
[6] (高欣, 吴欣强, 关辉等, 高温高压水环境中腐蚀产物膜的研究现状 [J]. 腐蚀科学与防护技术, 2007, 19: 110
[7] Kuang W J, Wu X Q, Han E-H. Influence of dissolved oxygen concentration on the oxide film formed on 304 stainless steel in high temperature water [J]. Corros. Sci., 2012, 63: 259
[8] Cheng X Q, Feng Z C, Li C T, et al. Investigation of oxide film formation on 316L stainless steel in high-temperature aqueous environments [J]. Electrochim. Acta, 2011, 56: 5860
[9] Terachi T, Yamada T, Miyamoto T, et al. Corrosion behavior of stainless steels in simulated PWR primary water-Effect of chromium content in alloys and dissolved hydrogen [J]. J. Nucl. Sci. Technol., 2008, 45: 975
[10] Qiu S Y, Sun D Q, Li Y L, et al. Investigation on the corrosion behavior of nuclear grade stainless claddingmaterials [J]. Atom. Energy Sci. Technol., 2002, 36: 193
[10] 邱绍宇, 孙丹琦, 李燕伶等. 核级不锈钢堆焊材料腐蚀性能研究 [J]. 原子能科学技术, 2002, 36: 193
[11] Peng D Q, Hu S L, Zhang P L, et al. Long term general corrosion property of 316Ti stainless steel in high temperature and high pressure primary water [J]. J. Wuhan Univ. Technol., 2012, 34(11): 6
[11] 彭德全, 胡石林, 张平柱等. 316Ti不锈钢高温高压长期均匀腐蚀研究 [J]. 武汉理工大学学报, 2012, 34(11): 6)
[12] Jiang E, Wen Y, Liu R C, et al. Research on general corrosion property of 304NG stainless steel [J]. Nucl. Power Eng., 2005, 26: 390
[12] 姜峨, 文燕, 刘然超等. 304NG不锈钢均匀腐蚀性能研究 [J]. 核动力工程, 2005, 26: 390
[13] Peng Q J, Zhang Z M, Wang J Q, et al. Influence of dissolved hydrogen on oxidation of stainless steel 316L in simulated PWR primary water [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 217
[13] 彭青姣, 张志明, 王俭秋等. 溶解氢对316L不锈钢在模拟压水堆一回路水中氧化行为的影响 [J]. 中国腐蚀与防护学报, 2012, 32: 217
[14] Ha H Y, Jang M H, Lee T H, et al. Interpretation of the relation between ferrite fraction and pitting corrosion resistance of commercial 2205 duplex stainless steel [J]. Corros. Sci., 2014, 89: 154
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!