Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (2): 126-134    DOI: 10.11902/1005.4537.2016.212
Orginal Article Current Issue | Archive | Adv Search |
Corrosion Behaviour of Q235B Carbon Steel in Sediment Water From Crude Oil
Qingli CHENG1,2(),Bin TAO1,Shuan LIU3(),Quanzhen LIU1,Weihua ZHANG1,Songbai TIAN2,Liping WANG3
1 SINOPEC Qingdao Research Institute of Safety Engineering, Qingdao 266071, China
2 SINOPEC Research Institute of Petroleum Processing, Beijing 100083, China
3 Institute of Materials Technology, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201, China
Download:  HTML  PDF(6069KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the increasing import of high-sulfur oils, the storage tank bottom plates suffer severe corrosion from sediment water, which often cause the leakage of crude oil and result in serious economic loss and environmental pollution. The corrosion behavior of Q235B carbon steel in sediment water from crude oil was investigated by means of electrochemical impedance spectroscopy, wire beam electrode, electrochemical measurements and SEM/XRD techniques. Results showed that during the initial immersion period of 21 d the carbon steel suffered from uniform corrosion and its corrosion rate decreased with time. Afterwards, the corrosion was transformed to localized corrosion and its corrosion rate increased with time during the period of 21~35 d of immersion. The fact can be explained that the carbon steel surface was covered by scale of CaCO3, and the corrosion process can be hindered. However, corrosion pits were initiated and accelerated with increasing of time due to loss of corrosion protection from CaCO3 deposits after 21 d.

Key words:  sediment water of curde oil      Q235B carbon steel      corrosion      wire beam electrode     
Received:  27 October 2016     
Fund: Supported by SINOPEC Qingdao Research Institute of Safety Engineering (Y-199 and Y-200), National Natural Science Foundation of China (41506098), China Postdoctoral Fund and the Ninth Batch Special Funding(2015M580528 and 2016T90553) and Ningbo Natural Science Fund (2016A610261)

Cite this article: 

Qingli CHENG,Bin TAO,Shuan LIU,Quanzhen LIU,Weihua ZHANG,Songbai TIAN,Liping WANG. Corrosion Behaviour of Q235B Carbon Steel in Sediment Water From Crude Oil. Journal of Chinese Society for Corrosion and protection, 2017, 37(2): 126-134.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.212     OR     https://www.jcscp.org/EN/Y2017/V37/I2/126

Fig.1  10×10 matrix shaped wire beam electrode (WBE) (a) and schematic diagram of the three-electrode system (b) used in simulated sediment water from crude oil tank
Fig.2  SEM images of Q235B carbon steel after immersion in sediment water for 7 d (a) and 35 d (b)
Fig.3  SEM images of Q235B steel after immersion in sediment water for 1 d (a) and 35 d (b) without corrosion product
Fig.4  Time dependence of mass loss of Q235B carbon steel after immersion in sediment water for 35 d
Fig.5  SEM image (a) and EDS analysis (b) of Q235B carbon steel after immersion in sediment water for 35 d
Fig.6  XRD spectrum of the precipitates on Q235B carbon steel surface after immersion in sediment water for 35 d
Fig.7  Nyquist (a) and Bode (b) plots of Q235B carbon steel after immersion in sediment water for different time
Fig.8  Equivalent circuits used to fit the EIS data of the Q235B carbon steel after immersion in sediment water for different time
Fig.9  Time dependence of 1/Rct of Q235B carbon steel after immersion in sediment water for different time
Fig.10  Evolution of distribution of potential (a1~g1) and galvanic current (a2~g2) for Q235B carbon steel after immersion in deoxygenated sediment water for 1 d (a1, a2), 3 d (b1, b2), 7 d (c1, c2), 14 d (d1, d2), 21 d (e1, e2), 28 d (f1, f2) and 35 d (g1, g2)
Fig.11  LF values of Q235B carbon steel WBE as a function of immersion time
Fig.12  Corrosion mechanism of Q235B carbon steel in sediment water during 35 d of immersion
[1] News. The first phase of national petroleum reserve putting-in-service proactively total capacity of 16.4 million cubic meters[J]. East Chin Electr. Power, 2014, 42(11): 2283
[1] (本刊讯. 国家石油储备一期工程投用总库容1640万m3[J]. 华东电力, 2014, 42(11): 2283)
[2] Medvedeva M L, Tiam T D.Classification of corrosion damage in steel storage tanks[J]. Chem. Petrol. Eng., 1998, 34: 620
[3] Shuai J, Han K J, Xu X R.Risk-based inspection for large-scale crude oil tanks[J]. J. Loss Prevent. Proc. Ind., 2012, 25: 166
[4] Resource protection international, lastfire project coordinators for the lastfire project steering group. Lastfire, project updata large atmospheric storage tank fire-Incident survey for: 1984-2011 [R]. 2012
[5] Chen C M.Reason analyzing of crude oil tank bottom plate leak and measure[J]. Inner Mongolia Petrochem. Ind., 2010, 36(14): 47
[5] (陈春梅. 原油罐罐底板泄漏的原因分析及修复对策[J]. 内蒙古石油化工, 2010, 36(14): 47)
[6] Wu Y S.Methods for Corrosion Research [M]. Beijing: Metallurgical Industry Press, 1993
[6] (吴荫顺. 金属腐蚀研究方法 [M]. 北京: 冶金工业出版社, 1993)
[7] Zhu W S, Sheng G, Sun Q Z.Corrosion control of bottom plates of erude oil storage tanks in oil refineries[J]. China Petrol. Mach., 2000, 28(12): 19
[7] (朱文胜, 盛刚, 孙庆祝. 炼油厂原油罐底板的腐蚀与防护[J]. 石油机械, 2000, 28(12): 19)
[8] Groysman A.Corrosion in Systems for Storage and Transportation of Petroleum Products and Biofuels: Identification, Monitoring and Solutions[M]. Netherlands: Springer, 2014
[9] Gao D P, Yu H, Zhou Y Y, et al.Analyses of corrosion and protection status of tank in island environment[J]. Sichuan Chem. Ind., 2014, 17(3): 30
[9] (高德朋, 俞虹, 周芸芸等. 海岛环境下油罐腐蚀与防护现状分析[J]. 四川化工, 2014, 17(3): 30)
[10] de Oliveira Souza M, Ribeiro M A, Carneiro M T W D, et al. Evaluation and determination of chloride in crude oil based on the counterions Na, Ca, Mg, Sr and Fe, quantified via ICP-OES in the crude oil aqueous extract[J]. Fuel, 2015, 154: 181
[11] Rios E C, Zimer A M, Mendes P C D, et al. Corrosion of AISI 1020 steel in crude oil studied by the electrochemical noise measurements[J]. Fuel, 2015, 150: 325
[12] Soares C G, Garbatov Y, Zayed A, et al.Corrosion wastage model for ship crude oil tanks[J]. Corros. Sci., 2008, 50: 3095
[13] Wang Z L, Zhang J, Wang Z M, et al.Emulsification reducing the corrosion risk of mild steel in oil-brine mixtures[J]. Corros. Sci., 2014, 86: 310
[14] Larsen K R.Roundtable Q & A: Managing corrosion of pipelines that transport crude oils[J]. Mater. Perform., 2013, 52: 28
[15] Liu Y C, Zhang Y L, Yuan J M, et al.Research on corrosion perforation on pipeline by media of high salinity acidic oil-water mixture[J]. Eng. Fail. Anal., 2013, 34: 35
[16] Liu X Y, Zhao G L, Zhong S S, et al.Time-variant reliability analysis of tank bottom shell considering corrosion[J]. J. China Univ. Petrol.(Nat. Sci. Ed.), 2013, 37(1): 119
[16] (刘雪云, 赵光连, 钟诗胜等. 考虑腐蚀储罐底圈壁板的时变可靠度分析[J]. 中国石油大学学报 (自然科学版), 2013, 37(1): 119)
[17] Huang J H, Liang J Z, Li L, et al.Corrosion evaluation and protection for wellbore and surface pipeline by in-situ combustion process[J]. Xinjiang Petrol. Geol., 2013, 34: 101
[17] (黄继红, 梁金中, 李路等. 火驱生产中井筒及地面管线腐蚀评价与防护[J]. 新疆石油地质, 2013, 34: 101)
[18] Du Q Z, Xie G, Yang M H, et al.Analysis of well pipe string corrosion factors in Huabei oilfield[J]. J. Southwest Petrol. Univ.(Sci. Technol. Ed.), 2013, 35(3): 142
[18] (杜清珍, 谢刚, 杨梅红等. 华北油田油井腐蚀原因分析[J]. 西南石油大学学报(自然科学版), 2013, 35(3): 142)
[19] Zhang Y C, Wang H H, Li Y X, et al.Generation mechanism and corrosion for hydrogen sulfide in oil well of 3rd oil plant in qinghai oilfield[J]. J. Southwest Petrol. Univ.(Sci. Technol. Ed.), 2011, 33(1): 151
[19] (张永成, 王洪辉, 李应祥等. 青海油田三厂硫化氢形成机理及腐蚀性研究[J]. 西南石油大学学报(自然科学版), 2011, 33(1): 151)
[20] Wu K D, Zeng W M, Wang W Q, et al.Static specimen experimental study for corrosion in sedimentary water from crude oil storage tank[J]. Chem. Equip. Technol., 2013, 34(6): 13
[20] (邬康迪, 曾为民, 汪文强等. 原油储罐沉积水腐蚀的静态挂片实验研究[J]. 化工装备技术, 2013, 34(6): 13)
[21] Zhao X E, Jiang J C, Wang Y Z, et al.Study on corrosion of Q235-B steel crude oil tanks[J]. Corros. Prot. Petrochem. Ind., 2008, 25(3): 4
[21] (赵雪娥, 蒋军成, 王永忠等. Q235-B钢在原油储罐中的腐蚀及其机理[J]. 石油化工腐蚀与防护, 2008, 25(3): 4)
[22] Zhang Z H, Chen B Z, Li J H, et al.On spontaneous combustion characteristics of the iron sulfides in oil tanks containing sulfur[J]. J. Saf. Environ., 2007, 7(3): 124
[22] (张振华, 陈宝智, 李君华等. 含硫油品储罐腐蚀产物自燃性的研究[J]. 安全与环境学报, 2007, 7(3): 124)
[23] Zhao X E, Jiang J C, Yang M, et al.Corrosion mechanism of atmosphere exposed area of oil tank filled with sulfur-containing petroleum[J]. Mater. Prot., 2007, 40(12): 22
[23] (赵雪娥, 蒋军成, 杨猛等. 含硫油品储罐气相空间腐蚀机理研究[J]. 材料保护, 2007, 40(12): 22)
[24] Zhu J X.Causes leading to corrosion of the bottom plate of crude oil stock tank and measures for protection[J]. Mater. Prot., 2009, 42(5): 56
[24] (朱吉新. 原油储罐底板腐蚀的原因及其防护措施[J]. 材料保护, 2009, 42(5): 56)
[25] Zhu C F, Xu F, Wu L, et al.Investigation and evaluation for outer corrosion of crude oil tank of Zhuyun CO., YPC[J]. Corros. Sci. Prot. Technol., 2005, 17: 209
[25] (朱承飞, 徐峰, 武烈等. 扬子石化贮运厂原油储罐外腐蚀调查及评估[J]. 腐蚀科学与防护技术, 2005, 17: 209)
[26] Park S, Kitsukawa S, Katoh K, et al.Development of AE monitoring method for corrosion damage of the bottom plate in oil storage tank on the neutral sand under loading[J]. Mater. Trans., 2006, 47: 1240
[27] Wang K, Huang S L, Zhao W.Data acquisition and analysis system for a magnetic flux leakage tank floor corrosion scanner[J]. J. Tsinghua Univ.(Sci. Technol.), 2008, 48: 20
[27] (王珅, 黄松岭, 赵伟. 储罐底板腐蚀检测数据采集和分析软件的开发[J]. 清华大学学报(自然科学版), 2008, 48: 20)
[28] Monteiro M J, Saunders S R J, Rizzo F C. The effect of water vapour on the oxidation of high speed steel, kinetics and scale adhesion[J]. Oxid. Met., 2011, 75: 57
[29] Tang J W, Shao Y W, Chen Z, et al.Corrosion behavior of carbon steel in H2S-HCl-H2O at 90 ℃ II- the effect of HCl concentration on corrosion behavior of carbon steel in H2S solutions[J]. Corros. Sci. Prot. Technol., 2011, 31: 34
[29] (唐俊文, 邵亚薇, 陈阵等. 碳钢在90 ℃、H2S-HCl-H2O环境下的腐蚀行为II-H2S溶液中HCl浓度对碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2011, 31: 34)
[30] Ketrane R, Saidani B, Gil O, et al.Efficiency of five scale inhibitors on calcium carbonate precipitation from hard water: Effect of temperature and concentration[J]. Desalination, 2009, 249: 1397
[31] de Waard C, Lotz U, Milliams D E. Predictive model for CO2 corrosion engineering in wet natural gas pipelines[J]. Corrosion, 1991, 47: 976
[32] Cheng Q L, Tao B, Song L Y, et al.Corrosion behaviour of Q235B carbon steel in sediment water from crude oil[J]. Corros. Sci., 2016, 111: 61
[33] Cheng Q L, Song S H, Song L Y, et al.Effect of relative humidity on the initial atmospheric corrosion behavior of zinc during drying[J]. J. Electrochem. Soc., 2013, 160: C380
[34] Dong Z H, Shi W, Guo X P.Initiation and repassivation of pitting corrosion of carbon steel in carbonated concrete pore solution[J]. Corros. Sci., 2011, 53: 1322
[35] Han D, Jiang R J, Cheng Y F.Mechanism of electrochemical corrosion of carbon steel under deoxygenated water drop and sand deposit[J]. Electrochim. Acta, 2013, 114: 403
[36] Reffass M, Sabot R, Jeannin M, et al.Effects of NO2- ions on localised corrosion of steel in NaHCO3+NaCl electrolytes[J]. Electrochim. Acta, 2007, 52: 7599
[37] Okada T.A two-step initiation hypothesis of pitting corrosion in passive metals[J]. Corros. Sci., 1990, 31: 453
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!