Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (6): 637-644    DOI: 10.11902/1005.4537.2016.186
Orginal Article Current Issue | Archive | Adv Search |
Preparation and Inhibition Behavior of Molybdate Intercalated ZnAlCe-hydrotalcite
Jihui WANG(),Huajie YAN,Wenbin HU
School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
Download:  HTML  PDF(809KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Molybdate intercalated ZnAlCe-hydrotalcite (ZnAlCe-MoO4 LDH) was synthesized by using solvothermal method, and the preparation parameters such as n(Al3+)/n(Ce3+) ratio, reaction temperature and crystallization temperature were optimized by single factor and orthogonal experiments. The surface morphology and structure of the prepared ZnAlCe-MoO4 LDH were characterized by SEM, XRD and FT-IR methods. The inhibition behavior of ZnAlCe-MoO4 LDH for Q235 steel in 3.5%(mass fraction) NaCl solution were investigated by EIS and XPS. Results show that the synthesized ZnAlCe-MoO4 LDH presents laminar microstructure with the thickness of 30 nm. The optimum preparation conditions are n(Al3+)/n(Ce3+) ratio of 6:1, reaction temperature of 60 ℃and crystallization temperature of 100 ℃. The inhibition effect of ZnAlCe-MoO4 LDH on the corrosion of Q235 steel in 3.5%NaCl solution may be ascribed to the reduction of chloride concentration in 3.5%NaCl solution owing to the anion exchange with molybdate, the formation of passive film with the composition of ferrous or iron molybdate and the deposition of film consisted of zinc and cerium hydroxides.

Key words:  layered double hydroxide      inhibitor      orthogonal experiment      carbon steel      seawater     

Cite this article: 

Jihui WANG,Huajie YAN,Wenbin HU. Preparation and Inhibition Behavior of Molybdate Intercalated ZnAlCe-hydrotalcite. Journal of Chinese Society for Corrosion and protection, 2016, 36(6): 637-644.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.186     OR     https://www.jcscp.org/EN/Y2016/V36/I6/637

Experiment No. Factor Inhibitionrate / %
n(Al3+)/n(Ce3+) ratio Reactiontemperature / ℃ Crystallization temperature / ℃
1 5:1 25 80 19.33
2 5:1 40 100 42.92
3 5:1 60 120 43.59
4 5:1 80 140 11.52
5 6:1 25 100 37.02
6 6:1 40 80 50.90
7 6:1 60 140 52.10
8 6:1 80 120 34.08
9 7:1 25 120 40.01
10 7:1 40 140 29.24
11 7:1 60 80 51.85
12 7:1 80 100 39.70
13 8:1 25 140 38.62
14 8:1 40 120 37.20
15 8:1 60 100 49.52
16 8:1 80 80 36.60
Table 1  Orthogonal table and inhibition rate of ZnAlCe-MoO4 LDH
Fig.1  Variations of inhibition rate of ZnAlCe-MoO4 LDH with n(Al3+)/n(Ce3+) ratio (a), reaction temperature (b) and crystallization temperature (c) under the conditions of single factor experiments
Factor n(Al3+)/n(Ce3+) ratio Reaction temperature / ℃ Crystallization temperature / ℃
K1 29.34 33.75 39.92
K2 43.32 40.07 42.29
K3 40.45 49.52 38.72
K4 40.49 30.48 32.87
R 13.98 19.04 9.42
Major factor BAC
Optimal level A2 B3 C2
Table 2  Range analysis of inhibition rate of ZnAlCe-MoO4 LDH (%)
Fig.2  Variations of inhibition rate of ZnAlCe-MoO4 LDH with n(Al3+)/n(Ce3+) ratio (a), reaction temperature (b) and crystallization temperature (c) under the conditions of orthogonal experiments
Fig.3  Surface morphology (a) and EDS analysis (b) of ZnAlCe-MoO4 LDH
Fig.4  XRD pattern of ZnAlCe-MoO4 LDH
Fig.5  FT-IR spectrum of ZnAlCe-MoO4 LDH
Fig.6  Surface morphologies of Q235 steel after corrosion in 3.5%NaCl (a) and 3.5%NaCl+2 g/L ZnAlCe-MoO4 LDH (b) solutions
Fig.7  Full XPS spectrum (a), O1s (b) and Fe2p (c) spectra of Q235 steel after corrosion in 3.5%NaCl solution
Fig.8  Full XPS spectrum (a), O1s (b), Fe2p (c), Mo3d (d), Zn2p (e) and Ce3d (f) spectra of Q235 steel aftercorrosion in 3.5%NaCl+2 g/L ZnAlCe-MoO4 LDH solution
[1] Hou C Y.Seawater cooling treatment technology[J]. Ocean Technol., 2002, 21(4): 33
[1] (侯纯扬. 海水冷却技术[J]. 海洋技术, 2002, 21(4): 33)
[2] Wang W Z, Gao X, Gao L L, et al.Progress in environmental-friendly inhibitor for carbon steel in seawater recirculating cooling system[J]. Corros. Sci. Prot. Technol., 2013, 25(4): 3313
[2] (王维珍, 高翔, 高丽丽等. 海水循环冷却系统中环境友好型碳钢缓蚀剂的研究进展[J]. 腐蚀科学与防护技术, 2013, 25(4): 331)
[3] Fouda A S, Megahed H, Ead D M.Lanthanides as environmentally friendly corrosion inhibitors of iron in 3.5%NaCl solution[J]. Desalin. Water Treat., 2013, 51(16-18): 3164
[4] Wu M T, Li Y T, Li Z F, et al.Corrosion inhibition performance of chitosan and phosphonic chitosan for mild steel in seawater[J]. J. Chin. Soc. Corros. Prot., 2010, 30(3): 192
[4] (吴茂涛, 李言涛, 李再峰等. 水溶性壳聚糖及其磷酸酯在海水中对碳钢的缓蚀作用[J]. 中国腐蚀与防护学报, 2010, 30(3): 192)
[5] Rui Y L, Lu M X, Liang Y H, et al.Inhibition behavior of molybdate inhibitors for carbon steel in sea water[J]. Corros. Prot., 2007, 28(2): 61
[5] (芮玉兰, 路迈西, 梁英华等.钼酸盐复合缓蚀剂对海水中碳钢的缓蚀作用[J]. 腐蚀与防护, 2007, 28(2): 61)
[6] Buchheit R G, Mamidipally S B, Schmutz P.Active corrosion protection in Ce-modified hydrotalcite conversion coatings[J]. Corrosion, 2002, 58(1): 3
[7] Kendig M, Hon M, Warren L.'Smart' corrosion inhibiting coatings[J]. Prog. Org. Coat., 2003, 47: 183
[8] Duan X, Lu J.Two Dimensional Nano Composite Metal Hydroxide: Structure, Assembly and Function [M]. Beijing: Science Press, 2013
[8] (段雪, 陆军. 二维纳米复合金属氢氧化物:结构、组装与功能[M]. 北京: 科学出版社, 2013)
[9] Yu X, Niu X C, Yu Z D.Study on adsorption of chloride ion on molybdate intercalated hydrotalcite[J]. Surf. Technol., 2012, 41(6): 26
[9] (于湘, 牛显春, 俞志东. 缓蚀剂钼酸盐插层水滑石对Cl-吸附行为的研究[J]. 表面技术, 2012, 41(6): 26)
[10] Wang Y, Zhang D.Synthesis, characterization, and controlled release anticorrosion behavior of benzoate intercalated Zn-Al layered double hydroxides[J]. Mater. Res. Bull., 2011, 46: 1963
[11] Hang T X, Truc T A, Duong N T, et al. Preparation and characterization of nanocontainers of corrosion inhibitor based on layered double hydroxides [J]. Appl. Clay Sci., 2012, 67/68: 18
[12] Mohapatra L, Parida K, Satpathy M. Molybdate/tungstate intercalated oxo-bridged Zn/Y LDH for solar light induced photodegradation of organic pollutants [J]. J. Phys. Chem., 2012, 116(24)C: 13063
[13] Mitchell P C H, Wass S A. Propane dehydrogenation over molybdenum hydrotalcite catalysts[J]. Appl. Catal. A-Gen., 2002, 225(1): 153
[14] Kloprogge J T, Frost R L.Fourier transform infrared and Raman spectroscopic study of the local structure of Mg-, Ni-, and Co-hydrotalcites[J]. J. Solid State Chem., 1999, 146(2): 506
[15] Zeng R C, Liu Z G, Zhang F, et al. Corrosion of molybdate intercalated hydrotalcite coating on AZ31 Mg alloy [J]. J. Mater. Chem., 2014, 2(32)A: 13049
[16] Fleutot S, Dieudonné B, Dupin J C, et al.Thermal behaviors and grafting process of LDH/benzene derivative hybrid systems[J]. Thermochim. Acta, 2012, 538: 1
[17] Zou Y, Wang J, Zheng Y Y.Electrochemical techniques for determining corrosion rate of rusted steel in seawater[J]. Corros. Sci., 2011, 53(1): 208
[18] Yan H J, Wang J H, Zhang Y, et al.Preparation and inhibition properties of molybdate intercalated ZnAlCe layered double hydroxide[J]. J. Alloy. Compd., 2016, 678: 171
[1] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] ZHAI Sixin, YANG Xingyun, YANG Jilan, GU Jianfeng. Corrosion Properties of Quenching-Partitioning-Tempering Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[4] WANG Yu, WU Jiajia, ZHANG Dun. Research Progress on Corrosion of Metal Materials Caused by Dissimilatory Iron-reducing Bacteria in Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[5] SHAO Minglu, LIU Dexin, ZHU Tongyu, LIAO Bichao. Preparation of Urotropine Quaternary Ammonium Salt and Its Complex as Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[6] JIA Qiaoyan, WANG Bei, WANG Yun, ZHANG Lei, WANG Qing, YAO Haiyuan, LI Qingping, LU Minxu. Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[7] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[8] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[9] DING Guoqing,LI Xiangyang,ZHANG Bo,YANG Zhaohui,HUANG Guiqiao,YANG Haiyang,LIU Kaiji. Variation of Free Corrosion Potential of Several Metallic Materials in Natural Seawater[J]. 中国腐蚀与防护学报, 2019, 39(6): 543-549.
[10] OUYANG Yuejun,HU Ting,WANG Jiayin,XIE Zhihui. Electrochemical Deposition and Characterization of Layered Double Hydroxide Film on Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[11] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[12] Shaokun YAN,Dajiang ZHENG,Jiang WEI,Guangling SONG,Lian ZHOU. Electrochemical Activation of Passivated Pure Titanium in Artificial Seawater[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[13] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[14] Ping XU,Shuo ZHANG,Shuai SI,Yajun ZHANG,Changzheng WANG. Corrosion Mechanism of Carbon Steel Induced by Protein and Polysaccharide-the Main Components of EPS[J]. 中国腐蚀与防护学报, 2019, 39(2): 176-184.
[15] Dan YANG,Dinglin LI,Yanliang HUANG,Pilong HUA,Xia ZHAO,Peng PENG,Xiutong WANG. Research Progress on Corrosion Issue and Metallic Material Selection Related with Seawater Pumped Storage Power Plant[J]. 中国腐蚀与防护学报, 2019, 39(1): 1-8.
No Suggested Reading articles found!