Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (6): 645-651    DOI: 10.11902/1005.4537.2016.121
Orginal Article Current Issue | Archive | Adv Search |
CO2 Corrosion Inhibition of Carbon Steel by Dodecylamine under Flow Conditions
Hongwei LIU1,Fuping XIONG1,Yalin LV1,Chengxuan GE1,Hongfang LIU1,2(),Yulong HU3
1. Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2. Shenzhen Institute of Huazhong University of Science and Technology, Shenzhen 518000, China
3. College of Science, Naval University of Engineering, Wuhan 430033, China
Download:  HTML  PDF(1011KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion inhibition of dodecylamine on carbon steel in NaCl solution with continuous aeration of CO2 was studied by means of a rotating disk with electrochemical methods. Results show that the inhibition efficiency of dodecylamine can reach 93.44% with the inhibitor dose of 60 mg/L in the solution. In the blank NaCl solution without inhibitor, the corrosion rate of the steel increases with the increase of the rotation speed. In the solution with the inhibitor dose of 80 mg/L, the corrosion rate of the steel reaches the highest by rotation speed 500 r/min, and then the lowest by 2000 r/min. The corrosion behavior of carbon steel has changed obviously in the presence of inhibitor. The corrosion rate increases with the increase of inhibitor dose, and the inhibition efficiency can reach 87.93% in the presence of inhibitor dose of 80 mg/L by 1500 r/min.

Key words:  CO2 corrosion      Q235 carbon steel      inhibitor      flow condition     

Cite this article: 

Hongwei LIU,Fuping XIONG,Yalin LV,Chengxuan GE,Hongfang LIU,Yulong HU. CO2 Corrosion Inhibition of Carbon Steel by Dodecylamine under Flow Conditions. Journal of Chinese Society for Corrosion and protection, 2016, 36(6): 645-651.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.121     OR     https://www.jcscp.org/EN/Y2016/V36/I6/645

Fig.1  Molecular structure of dodecylamine
Fig.2  Contact angles of the solutions containing different concetrations of inhibitor on Q235 carbon steel: (a) 0 mg/L; (b) 25 mg/L; (c) 50 mg/L; (d), 100 mg/L; (e), 200 mg/L; (f), 400 mg/L; (g), 600 mg/L; (h), 800 mg/L
Fig.3  Variation of contact angle with the concentration of inhibitor
Fig.4  Polarization curves (a) and the fitted corrosion current density and calculated inhibition efficiency as a fuction of inhibitor concentration (b)
Fig.5  Polarization curves of Q235 steel in the solutions without (a) and with (b) inhibitor under the conditions of different rotation speeds
Fig.6  Corrosion current density vs rotation speed curves obtained by fitting polarization curves of Q235 in Fig.5
Fig.7  Polarization curves (a) and fitted results (b) of Q235 steel in the solution with different concentrations of inhibitor at the rotation speed of 1500 r/min
Fig.8  EIS of Q235 steel in the solutions without (a) and with (b) inhibitor at different rotation speeds
Fig.9  Equivalent circuits simulating experimental impedance diagrams in Fig. 8 with one time constant (a) and two time constants (b)
Fig.10  Fitted results of EIS for Q235 in 3%NaClsolutions with and without inhibitor
[1] Liu H W, Liu H F, Qin S, et al.Investigation of biomineralization induced by sulfate reducing bacteria in sewage gathering pipelines in oilfield[J]. Corros. Sci. Prot. Technol., 2015, 27(1): 7
[1] (刘宏伟, 刘宏芳, 秦双等. 集输管线硫酸盐还原菌诱导生物矿化作用调查[J]. 腐蚀科学与防护技术, 2015, 27(1): 7)
[2] Liu H, Gu T, Zhang G, et al.The effect of magneticfield on biomineralization and corrosion behavior of carbon steel induced by iron-oxidizing bacteria[J]. Corros. Sci., 2015, 102: 93
[3] Liu H, Xu D, Dao A Q, et al.Study of corrosion behavior and mechanism of carbon steel in thepresence of chlorella vulgaris[J]. Corros. Sci., 2015, 101: 84
[4] Liu H, Fu C, Gu T, et al.Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water[J]. Corros. Sci., 2015, 100: 484
[5] Kermani M B, Morshed A.Carbon dioxide corrosion in oil and gas production: a compendium[J]. Corrosion, 2003, 59(8): 659
[6] Okafor P C, Liu X, Zheng Y G.Corrosion inhibition of mild steel by ethylamino imidazoline derivative in CO2-saturated solution[J]. Corros. Sci., 2009, 51(4): 761
[7] Yin Z F, Zhao W Z, Bai Z Q, et al.Characteristics of CO2 corrosion scale formed on P110 steel in simulant solution with saturated CO2[J]. Surf. Interface Anal., 2008, 40(9): 1231
[8] Zhang G A, Cheng Y F.On the fundamentals of electrochemical corrosion of X65 steel in CO2-containing formation water in the presence of acetic acid in petroleum production[J]. Corros. Sci., 2009, 51(1): 87
[9] Lu Z L.Studies of inhibition performance and adsorption behavior of inhibitors on carbon steel in near neutral CO2-saturated brine solution [D]. Wuhan: Huazhong University of Science and Technology, 2007
[9] (鲁照玲. 近中性CO2饱和盐水溶液中缓蚀剂在碳钢表面吸附和缓蚀行为的研究 [D]. 武汉: 华中科技大学, 2007)
[10] Okafor P C, Liu C B, Liu X, et al.Corrosion inhibition and adsorption behavior of imidazoline salt on N80 carbon steel in CO2 -saturated solutions and its synergism with thiourea[J]. J. Solid State Electrochem., 2010, 14(8): 1367
[11] Moretti G, Guidi F, Grion G.Tryptamine as a green iron corrosion inhibitor in 0.5 M deaerated sulphuric acid[J]. Corros. Sci., 2004, 46(2): 387
[12] Liu H, Gu T, Zhang G, et al.Corrosion inhibition of carbon steel in CO2-containing oilfield produced water in the presence of iron-oxidizing bacteria and inhibitors[J]. Corros. Sci., 2016, 105: 149
[13] Zhao J M, Chen G H.Synergistic inhibition mechanism of imidazoline and thiourea in CO2 corrosive system[J]. J. Chin. Soc. Corros. Prot., 2013, 33(3): 226
[13] (赵景茂, 陈国浩. 咪唑啉与硫脲在CO2腐蚀体系中的缓蚀协同作用机理[J]. 中国腐蚀与防护学报, 2013, 33(3): 226)
[14] Ortega-Sotelo D, Gonzalez-Rodriguez J, Neri-Flores M, et al.CO2, corrosion inhibition of X-70 pipeline steel by carboxyamido imidazoline[J]. J. Solid State Electrochem., 2011, 15(9): 1997
[15] Ortega-Toledo D M, Gonzalez-Rodriguez J G, Casales M, et al. CO2, corrosion inhibition of X-120 pipeline steel by a modified imidazoline under flow conditions[J]. Corros. Sci., 2011, 53(11): 3780
[16] Wu S L, Cui Z D, Zhao G X, et al.EIS study of the surface film on the surface of carbon steel from supercritical carbon dioxide corrosion[J]. Appl. Surf. Sci., 2004, 228(1-4): 17
[17] Li C, Richter S, Nesic S.How do inhibitors mitigate corrosion in oil-water two-phase flow beyond lowering the corrosion rate?[J]. Corrosion, 2014, 70(9): 958
[18] Liu X, Okafor P C, Zheng Y G.The inhibition of CO2 corrosion of N80 mild steel in single liquid phase and liquid/particle two-phase flow by aminoethyl imidazoline derivatives[J]. Corros. Sci., 2009, 51(4): 744
[19] Liu H W, Liu X, Wu L Y, et al.Research of scale inhibition performance of HGY-9BS modified imdazoline corrosion inhibitor[J]. Corros. Prot., 2014, 35(suppl. 2): 240
[19] (刘宏伟, 刘星, 吴林勇等. 改性咪唑啉缓蚀剂HGY-9BS阻垢性能研究[J]. 腐蚀与防护, 2014, 35(增刊2): 240)
[20] Zhang F, Liu H W, Chen B, et al.Corrosion inhibition of imidazoline for carbon steel in CO2-saturated artificial sewages with sulfate reduction bacteria[J]. J. Chin. Soc. Corros. Prot., 2015, 35(2): 156
[20] (张帆, 刘宏伟, 陈碧等. CO2和SRB共存产出水中咪唑啉衍生物的环境行为及缓蚀长效性研究[J]. 中国腐蚀与防护学报, 2015, 35(2): 156)
[21] Zhang Y, Pang X, Qu S, et al.Discussion of the CO2 corrosion mechanism between low partial pressure and supercritical condition[J]. Corros. Sci., 2012, 59(3): 186
[22] Hong T, Sun Y H, Jepson W P.Study on corrosion inhibitor in large pipelines under multiphase flow using EIS[J]. Corros. Sci., 2002, 44(1): 101
[23] Liu H W, Zhang F, Wu Y N, et al.Inhibition behavior of dodecylamine inhibitor in oilfield produced water containing saturated CO2 and SRB[J]. Corros. Prot., 2015, 36(2): 137
[23] (刘宏伟, 张帆, 吴亚楠等. 油田产出水中饱和CO2和SRB共存条件下十二胺缓蚀剂的缓蚀行为[J]. 腐蚀与防护, 2015, 36(2): 137)
[1] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] BAI Haitao, YANG Min, DONG Xiaowei, MA Yun, WANG Rui. Research Progress on CO2 Corrosion Product Scales of Carbon Steels[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[4] SHAO Minglu, LIU Dexin, ZHU Tongyu, LIAO Bichao. Preparation of Urotropine Quaternary Ammonium Salt and Its Complex as Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[5] JIA Qiaoyan, WANG Bei, WANG Yun, ZHANG Lei, WANG Qing, YAO Haiyuan, LI Qingping, LU Minxu. Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[6] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[7] YI Hongwei, HU Huihui, CHEN Changfeng, JIA Xiaolan, HU Lihua. Corrosion Behavior and Corrosion Inhibition of Dissimilar Metal Welds for X65 Steel in CO2-containing Environment[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[8] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[9] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[10] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[11] Jianguo LIU,Ge GAO,Yazhou XU,Zili LI,Wanran JI. Corrosion Inhibition Performance of Imidazoline Derivatives[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[12] Yaqiong LI,Jingling MA,Guangxin WANG,Yujie ZHU,Yongfa SONG,Jingli ZHANG. Effect of Sodium Phosphate and Sodium Dodecylbenzene-sulfonate on Discharge Performance of AZ31 Magnesium Air Battery[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[13] Yunxiang CHEN, Lijuan FENG, Jianbin CAI, Xuan WANG, Yicheng HONG, Deyuan LIN, Jianhuang ZHUANG, Huaiyu YANG. Inhibition Effect of a New Composite Organic Inhibitor on Corrosion of Steel Rebar in Simulated Concrete Solution or Inside Mortar Specimen[J]. 中国腐蚀与防护学报, 2018, 38(4): 343-350.
[14] Jingling MA, Shuai TONG, Fengzhang REN, Guangxin WANG, Yaqiong LI, Jiuba WEN. Influences of Inhibitor L-Cysteine/zinc Oxide on Electrochemical Performance of 3102 Al-alloy in Alkaline Solution[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[15] Wanjun PENG, Jiheng DING, Hao CHEN, Haibin YU. Corrosion Inhibition of Bio-based Inhibitor Furfuryl Glycidyl Ether[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
No Suggested Reading articles found!