Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (4): 365-371    DOI: 10.11902/1005.4537.2014.173
Current Issue | Archive | Adv Search |
Electrochemical Behavior of Steel 20G Used in Boiler-front System in Simulated High Temperature Waters
Xueying TANG1,Guohua LU2,Zhiping ZHU1(),Sen LIU1,Daxia MAO1
1. School of Chemical and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, China
2. Electric Power Research Institute of Guangdong Power Grid Company, Guangzhou 510080, China
Download:  HTML  PDF(1739KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Electrochemical corrosion behavior of steel 20G used in boiler-front system was studied by means of a series of electrochemical measurements in simulated high temperature waters, which reproduced the situation of chemical conversion film formation by both the oxygenated treatment (OT) and all volatile treatment (reduction) (AVT(R)). The surface of the test steel was characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and X-ray diffraction (XRD). The results show that, when the temperature is between 40 to 140 ℃, the corrosion current density of 20G rises in the OT waters, EIS has the Warburg impedance in low frequency region. While the corrosion current first rises and then decreases in the AVT(R) waters with the increase of temperature, while capacitive reactance impedance radius in the high frequency region of EIS spectra presents a minimum value at 120 ℃ with the increase of temperature. The analysis of XRD shows that the surface of the steel forms a passivation film consisted mainly of Fe3O4.

Key words:  20G      polarization curve      corrosion current      electrochemical impedance spectroscopy     

Cite this article: 

Xueying TANG,Guohua LU,Zhiping ZHU,Sen LIU,Daxia MAO. Electrochemical Behavior of Steel 20G Used in Boiler-front System in Simulated High Temperature Waters. Journal of Chinese Society for Corrosion and protection, 2015, 35(4): 365-371.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.173     OR     https://www.jcscp.org/EN/Y2015/V35/I4/365

Fig.1  Polarization curves of 20G under OT (a) and AVT(R) (b) conditions, and variations of the corrosion current density with temperature (c)
Fig.2  Electrochemical impedance spectroscopyies (a) and equivalent circuit (b) of 20G under OT condition
Temperature Rs Ωcm2 Cd1 Fcm-2 Rr1 Ωcm2 W Scm2 Cd2 Fcm-2 Rad Ωcm2 L Hcm2 Rr2 Ωcm2
40 315.3 1.087×10-4 15460 3.109×10-4 6.450×10-11 53970 1.059 5534
60 313.4 1.226×10-4 13900 1.822×10-4 2.995×10-11 50600 0.742 4248
80 315.2 1.015×10-4 9353 1.736×10-4 3.210×10-11 39500 0.692 4064
100 314.2 7.836×10-5 5950 2.074×10-4 4.118×10-11 30410 0.483 3998
120 312.3 7.917×10-5 5441 3.393×10-4 4.851×10-11 26290 0.519 3518
130 316 6.867×10-5 4986 2.249×10-4 5.540×10-11 55680 9.757 4925
140 314 3.040×10-5 4982 2.695×10-4 6.647×10-11 49510 6.556 4956
Table 1  EIS fitting results for 20G material under OT condition
Fig.3  Electrochemical impedance spectroscopies (a) and equivalent circuit (b) of 20G under AVT(R) condition
Temperature Rs Ωcm2 Cd1 Fcm-2 Rr1 Ωcm2 Cd2 Fcm-2 Rad Ωcm2 Rr2 Ωcm2 L Hcm2
40 402.5 4.270×10-5 769400 3.296×10-11 617200 128300 2.909
60 407.2 1.731×10-4 226100 5.804×10-11 550200 22340 1.554
80 402.7 5.365×10-5 70410 4.540×10-11 127200 15480 3.686
100 402.7 1.022×10-4 41400 5.975×10-11 58040 26410 1.103
120 400 1.434×10-4 23770 7.134×10-11 18100 8524 0.366
130 412 6.074×10-4 32930 4.185×10-11 95530 33220 3.291
140 400 6.748×10-5 74090 9.310×10-11 29650 75080 0.493
Table 2  EIS fitting results for 20G material under AVT(R) condition
Fig.4  SEM image (a) and EDS result (b) of the corrosion product film formed on 20G material under OT condition
Fig.5  SEM image (a) and EDS result (b) of the corrosion product film formed on 20G material under AVT(R) condition
Fig.6  XRD patterns of 20G material under different conditions at 150 ℃
[1] Zhu Z P,Sun B D,Li Y C. Power Plant Boiler Water Chemistry Conditions and Optimization[M]. Bingjing: China Electric Power Press, 2009 (朱志平,孙本达,李宇春. 电站锅炉水化学工况及优化[M]. 北京:中国电力出版社, 2009)
[2] Cao C N, Wang J, Lin H C. Effects of chloride ions on the passive metal electrode impedance spectrum[J]. J. Chin. Soc. Corros. Prot., 1989, 9(4): 262 (曹楚南, 王佳, 林海潮. 氯离子对钝态金属电极阻抗频谱的影响[J]. 中国腐蚀与防护学报, 1989, 9(4): 262)
[3] Huang J B,Wu X Q,Han E-H,et al. Electrochemical research status and progress in high temperature and pressure aqueous solution [J]. J. Chin. Soc. Corros. Prot.., 2008, 28(6): 374 (黄军波, 吴欣强, 韩恩厚等. 材料在高温高压水溶液中的电化学研究现状与进展[J]. 中国腐蚀与防护学报, 2008, 28(6): 374)
[4] Zhao G X, Lv X H, Li H L, et al. Effect of temperature on the corrosion behavior of steel P110 CO2[J]. J. Chin. Soc. Corros. Prot., 2005, 25(2): 93 (赵国仙, 吕详鸿, 李鹤林等. 温度对P110钢CO2腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2005, 25(2): 93)
[5] Xie L H, Chen C F, Li H L, et al. Nickel-based alloys and chromes Corrosion characteristics at high temperatures[J]. Xi'an Shiyou Univ.(Nat. Sci.), 2012, 27(2): 76 (谢丽华, 陈长风, 李鹤林等. 镍基合金和铬在高温下的腐蚀电化学特征[J]. 西安石油大学学报 (自然科学版), 2012, 27(2): 76)
[6] Li X H,Wang J Q,Han E-H,et al. Corrosion behavior of commercial nuclear grade alloy 690 and 800 alloy in simulated PWR primary circuit temperature and high pressure water [J]. Acta Metall. Sin.., 2012, 48(8): 941 (郦晓慧, 王俭秋, 韩恩厚等. 核级商用690合金和800合金在模拟压水堆核电站一回路高温高压水中的腐蚀行为研究[J]. 金属学报, 2012, 48(8): 941)
[7] Kritzer P. Corrosion in high-temperature and supercritical water and aqueous solutions: a review[J]. J. Supercrit. Fluid., 2004, 29: 1
[8] Bojinov M, Kinnumen P, Sundholm G. Electrochemical behavior of Nickel-Chromium alloys in a high-temperature aqueous electrolyte[J]. Corros. Sci., 2003, 59(2): 91
[9] MacDonald D, Hettiarachchi S, Lenhart S. The thermodynamic viability of yttria-stabilized pH sensor for high temperature aqueous solutions[J]. J. Solut. Chem., 1988, 17: 719
[10] DL/T805.4-2004. Thermal power plants water chemical Guidelines Part IV: boiler feed water treatment[S] (DL/T805.4-2004. 火电厂汽水化学导则 第四部分: 锅炉给水处理[S])
[11] DL/T805.1-2011. Thermal power plants water chemical Guidelines Part I: boiler feed water oxygenated treatment guidelines[S] (DL/T805.1-2011. 火电厂汽水化学导则第一部分: 锅炉给水加氧处理导则[S])
[1] CAO Jingyi, YANG Yange, FANG Zhigang, SHOU Haiming, LI Liang, FENG Yafei, WANG Xingqi, CHU Guangzhe, ZHAO Yi. Failure Behavior of Fresh Water Tank Coating in Different Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[2] CAO Jingyi, FANG Zhigang, LI Liang, FENG Yafei, WANG Xingqi, SHOU Haiming, YANG Yange, CHU Guangzhe, YIN Wenchang. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Fresh Water and Salt Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[3] CAO Jingyi, FANG Zhigang, FENG Yafei, LI Liang, YANG Yange, SHOU Haiming, WANG Xingqi, ZANG Bolin. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Reverse Osmosis Water and Conditioned Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[4] LI Ziyun, WANG Gui, LUO Siwei, DENG Peichang, HU Jiezhen, DENG Junhao, XU Jingming. Early Corrosion Behavior of EH36 Ship Plate Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[5] SUN Shuo, YANG Jie, QIAN Xinzhu, CHANG Renli. Preparation and Electrochemical Corrosion Behavior of Electroless Plated Ni-Cr-P Alloy Coating[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[6] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[7] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[8] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[9] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[10] Xiuling LAN,Guangming LIU,Jiesheng ZHOU,Zhilei LIU,Shusen PENG,Maodong LI. Preparation and Properties of Organosilicone/SiO2Hybrid Sol Modified Acrylic Resin[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[11] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[12] Mingyuan JIAO, Weiliang JIN, Jianghong MAO, Teng LI, Jin XIA. Effect of Concrete Inner Environment on Hydrogen Evolution of Rebar During ElectrochemicalRemediation[J]. 中国腐蚀与防护学报, 2018, 38(5): 463-470.
[13] Zengyi SONG, Li LIU, Li DENG, Yuan SUN, Yizhou ZHOU. Electrochemical Dissolution Behavior of N5 Nickel-based Single Crystal Superalloy in Aqua Regia Electrolyte[J]. 中国腐蚀与防护学报, 2018, 38(4): 365-372.
[14] Sanxi DENG, Xiaoyu YAN, Ke CHAI, Jinyi WU, Hongwei SHI. Effect of Pseudomonas sp. on Decomposition and Anticorrosion Behavior of Polysiloxane Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[15] Haijiao CAO, Yinghua WEI, Hongtao ZHAO, Chenxi LV, Yaozong MAO, Jing LI. Effect of Preheating Time on Protective Performance of Fusion Bonded Epoxy Powder Coating on Q345 Steel II: Failure Behavior Analysis of Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
No Suggested Reading articles found!