Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (5): 415-423    DOI: 10.11902/1005.4537.2017.183
Current Issue | Archive | Adv Search |
Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud
Peichang DENG1, Quanbing LIU1, Ziyun LI2, Gui WANG2, Jiezhen HU2(), Xie WANG2
1 College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
2 College of Mechanical and Power Engineering, Guangdong Ocean University, Zhanjiang 524088, China
Download:  HTML  PDF(6074KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of X70 pipeline steel in the tropical juncture area of seawater-sea mud has been studied by means of wire beam electrode technique, linear polarization, electrochemical impedance spectroscopy and other electrochemical analysis technique, coupled with the methods of corrosion morphology observation and corrosion products analysis. The results show that X70 pipeline steel has formed an oxygen concentration cell in the juncture area of seawater-sea mud, the electrodes in the sea mud and in the vicinity of interface of seawater-sea mud act as anode, and the electrodes in the seawater act as cathode. In the last stage of corrosion, the electrodes in the bottom of sea mud become cathode region where the main cathode reaction is occurred. The corrosion rate of the electrodes in the seawater is greater than the electrodes in the sea mud, and there is a peak of corrosion current in the vicinity of interface of seawater-sea mud. Dissolved oxygen promotes corrosion products gradually firmly and densely, the charge transfer resistance increased with the time, sulfate reducting bacteria in the bottom of the sea mud participate in the reaction, produced iron sulfide, the corrosion rate of the whole electrodes speed up with the cathode current density increased.

Key words:  wire beam electrode      juncture area of seawater-sea mud      galvanic corrosion      X70 pipeline steel      electrochemical impedance spectroscopy     
Received:  09 November 2017     
ZTFLH:  TG174  
Fund: Supported by Natural Science Fundation of Guangdong (2015A030313619), Science and Technology Plan Projects of Guangdong (2016A020225004) and Technical Project of Zhanjiang City (2015A02024 and 2014C01003)

Cite this article: 

Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud. Journal of Chinese Society for Corrosion and protection, 2018, 38(5): 415-423.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.183     OR     https://www.jcscp.org/EN/Y2018/V38/I5/415

Content EhmV Conductivity μScm-1 T pH
Seawater 479 45600 32.2 8.32
Sea mud-topside 476 3700 31.4 8.12
Sea mud-middle 416 7.12 29.5 7.64
Sea mud-bottom 327 5.38 29.7 7.26
Table 1  Physicochemical properties of the sampling seawater and sea mud
Fig.1  Surface morphologies of the electrodes on C, D and E arrays after corrosion in the juncture area of seawater-seamud for 15 d (a1~a6), 30 d (b1~b6), 45 d (c1~c6): (a1) C1, (a2) C4, (a3) C7-M, (a4) C7-W, (a5) C10, (a6) C13, (b1) D1, (b2) D4, (b3) D7-M, (b4) D7-W, (b5) D10, (b6) D13, (c1) E1, (c2) E4, (c3) E7-M, (c4) E7-W, (c5) E10, (c6) E13
Fig.2  EDS analysis results of corrosion products formed on X70 pipeline steel after exposure in the juncture area of seawater-sea mud for 15 d (a1~a4), 30 d (b1~b4) and 45 d (c1~c4): (a1) C1, (a2) C7-M, (a3) C7-W, (a4) C10, (b1) D1, (b2) D7-M, (b3) D7-W, (b4) D10, (c1) E1, (c2) E7-M, (c3) E7-W, (c4) E10
Fig.3  XRD patterns of the corrosion products formed on X70 pipeline steel after exposure in the juncture area of seawater-sea mud for 45 d: (a) sea mud, (b) seawater
Fig.4  Corrosion rates of X70 pipeline steel after exposure in the juncture area of seawater-sea mud for different time
Fig.5  Galvanic currents of the wire beam electrodes during exposure in the juncture area of seawater-sea mud for 1 d (a), 6 d (b), 10 d (c), 15 d (d), 30 d (e) and 45 d (f)
Fig.6  Galvanic current densities of the wire beam electrodes during exposure in the juncture area of seawater-sea mud for 1 d (a), 6 d (b), 10 d (c), 15 d (d), 30 d (e) and 45 d (f)
Fig.7  Corrosion current density (a) and corrosion potential (b) of X70 pipeline steel after exposure for different time in the juncture area of seawater-sea mud
Fig.8  Nyquist plots of EIS diagrams of 1# (a), 6# (b), 7# (c), 8# (d), 10# (e) and 12# (f) electrodes after exposure for different time in the juncture area of seawater-sea mud
Fig.9  Bode plots of EIS diagrams of 1# (a), 6# (b), 7# (c), 8# (d), 10# (e) and 12# (f) electrodes after exposure for different time in the juncture area of seawater-sea mud
[1] Hou B R, Nishikata A, Tsuru T.The corrosion behaviour of steel in juncture area between seawater and atmospheric zone[J]. Oceanol. Limnol. Sin., 1995, 26: 514侯保荣, 西方篤, 水流徹. 钢材在海水-海气变换界面区的腐蚀行为[J]. 海洋与湖沼, 1995, 26: 514)
[2] Zhang J L, Hou B R, Guo G Y, et al.Studies on electrochemical corrosion behavior of steel in juncture area between sea clay and seawater[J]. Oceanol. Limnol. Sin., 1995, 26: 98张经磊, 侯保荣, 郭公玉等. 海水海泥跃变区钢铁电化学腐蚀行为研究[J]. 海洋与湖沼, 1995, 26: 98)
[3] Hou B R, Guo G Y, Ma S D, et al.Study on the corrosion and protective of the juncture area between seawater and atmospheric and seawater and sea clay at marine environment[J]. Mar. Sci., 1993, (2) : 31侯保荣, 郭公玉, 马士德等. 海洋环境中海-气与海-泥交换界面区腐蚀与防护研究[J]. 海洋科学, 1993, (2): 31)
[4] Chen Y L, Zhang W, Ding K Y, et al.Debonding mechanism of organic coating with man-made defect in the area nearby water-line by WBE technique[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 67陈亚林, 张伟, 丁葵英等. WBE技术研究水线区破损涂层的剥离机制[J]. 中国腐蚀与防护学报, 2016, 36: 67)
[5] Chen Y L, Zhang W, Wang Q, et al.Debonding mechanism of organic coating with artificial defect in areas nearby water-line in 3.5%NaCl solution by WBE technique-II[J]. J. Chin. Soc. Corros. Prot., 2017, 37: 322陈亚林, 张伟, 王琦等. WBE技术研究水线区破损涂层的剥离机制-II[J]. 中国腐蚀与防护学报, 2017, 37: 322)
[6] Liu Z J, Wang W, Wang J, et al.Study of corrosion behavior of carbon steel under seawater film using the wire beam electrode method[J]. Corros. Sci., 2014, 80: 523
[7] Jeffrey R, Melchers R E.Corrosion of vertical mild steel strips in seawater[J]. Corros. Sci., 2009, 51: 2291
[8] Hu J Z, Cheng X Q, Li X G, et al.Evaluation of sea-air interface area corrosion for carbon steel by WBE technique and LP technique[J]. Corros. Prot., 2015, 36: 1014胡杰珍, 程学群, 李晓刚等. 阵列电极(WBE) 联合线性极化技术 (LP) 研究海水-大气界面区碳钢的腐蚀行为[J]. 腐蚀与防护, 2015, 36: 1014)
[9] Chen Y L, Zhang W, Wang W, et al.Evaluation of water-line area corrosion for Q235 steel by WBE technique[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 452陈亚林, 张伟, 王伟等. WBE技术研究水线区Q235碳钢腐蚀[J]. 中国腐蚀与防护学报, 2014, 34: 451)
[10] Tan Y, Bailey S, Kinsella B.Mapping non-uniform corrosion using the wire beam electrode method. III. Water-line corrosion[J]. Corros. Sci., 2001, 43: 1931
[11] Guo G Y, Zhang J L, Hou B R, et al.Corrosion of steel in sea-bottom mud of nothern China Sea area[J]. Electrochemistry, 2001, 7: 459郭公玉, 张经磊, 侯保荣等. 钢在中国北部海区海泥中的腐蚀[J]. 电化学, 2001, 7: 459)
[12] Hu J Z, Li X G, Deng P C, et al.Evaluation of carbon steel corrosion in vicinity of interface sea-water/sea-mud by techniques WBE and LP[J]. Corros. Sci. Prot. Technol., 2015, 27: 551胡杰珍, 李晓刚, 邓培昌等. WBE联合LP技术研究海水/海泥界面碳钢的腐蚀行为[J]. 腐蚀科学与防护技术, 2015, 27: 551)
[13] Hu J Z.Research of the corrosion behavior and mechanism of carbon steel in the juncture area of marine environment [D]. Beijing: University of Science and Technology Beijing, 2016胡杰珍. 海洋环境跃变区碳钢腐蚀行为与机理研究 [D]. 北京: 北京科技大学, 2016)
[14] Huang Y L, Zhu Y Y, Huang S D, et al.Hydrogen permeation investigation of a marine steel in the sea mud with sulfate-reducing bacteria[J]. J. Chin. Soc. Corros. Prot., 2008, 28: 355黄彦良, 朱永艳, 黄偲迪等. 海洋结构用钢在海泥中的氢渗透行为[J]. 中国腐蚀与防护学报, 2008, 28: 355)
[15] Zhang J, Liu F L, Li W H, et al.Effects of SRB on corrosion of Zn-Al-Cd anode in marine sediment[J]. Acta Metall. Sin., 2010, 46:1250张杰, 刘奉令, 李伟华等. 海泥中硫酸盐还原菌对Zn-Al-Cd牺牲阳极腐蚀的影响[J].金属学报, 2010, 46: 1250)
[1] DING Qingmiao, QIN Yongxiang, CUI Yanyu. Galvanic Corrosion of Aircraft Components in Atmospheric Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[2] YI Hongwei, HU Huihui, CHEN Changfeng, JIA Xiaolan, HU Lihua. Corrosion Behavior and Corrosion Inhibition of Dissimilar Metal Welds for X65 Steel in CO2-containing Environment[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[3] BAI Miaomiao, BAI Ziheng, JIANG Li, ZHANG Dongjiu, YAO Qiong, WEI Dan, DONG Chaofang, XIAO Kui. Corrosion Behavior of H62 Brass Alloy/TC4 Titanium Alloy Welded Specimens[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[4] CHEN Xu, LI Shuaibing, ZHENG Zhongshuo, XIAO Jibo, MING Nanxi, HE Chuan. Microbial Corrosion Behavior of X70 Pipeline Steel in an Artificial Solution for Simulation of Soil Corrosivityat Daqing Area[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[5] HUANG Chen,HUANG Feng,ZHANG Yu,LIU Haixia,LIU Jing. Galvanic Corrosion Behavior for Weld Joint of High Strength Weathering Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 527-535.
[6] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[7] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[8] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[9] Xiuling LAN,Guangming LIU,Jiesheng ZHOU,Zhilei LIU,Shusen PENG,Maodong LI. Preparation and Properties of Organosilicone/SiO2Hybrid Sol Modified Acrylic Resin[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[10] Zhenhua WANG, Yang BAI, Xiao MA, Shaohua XING. Numerical Simulation of Galvanic Corrosion for Couple of Ti-alloy with Cu-alloy in Seawaters[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
[11] Sanxi DENG, Xiaoyu YAN, Ke CHAI, Jinyi WU, Hongwei SHI. Effect of Pseudomonas sp. on Decomposition and Anticorrosion Behavior of Polysiloxane Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[12] Haijiao CAO, Yinghua WEI, Hongtao ZHAO, Chenxi LV, Yaozong MAO, Jing LI. Effect of Preheating Time on Protective Performance of Fusion Bonded Epoxy Powder Coating on Q345 Steel II: Failure Behavior Analysis of Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[13] Qi GUI, Dajiang ZHENG, Guangling SONG. Electrochemically Accelerated Evaluation of Protectiveness for an Alkyd Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[14] Zihan LIAO, Bo SONG, Ze REN, Chuan HE, Xu CHEN. Electrochemical Corrosion Behavior of Matrix and Weld Seam of X70 Steel in Na2CO3+NaHCO3 Solutions[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[15] Meng MEI, Hongai ZHENG, Huida CHEN, Ming ZHANG, Daquan ZHANG. Effect of Sulfate Reducing Bacteria on Corrosion Behavior of Cu in Circulation Cooling Water System[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
No Suggested Reading articles found!