Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (4): 372-378    DOI: 10.11902/1005.4537.2014.128
Current Issue | Archive | Adv Search |
Effect of Strain on Passivation of Stainless Steel in a Simulated Concrete Pore Solution
Xingguo FENG1,Xiangyu LU2,Yu ZUO3,Da CHEN1()
1. Key Laboratory of Coastal Disaster and Defence, Ministry of Education, Hohai University, Nanjing 210098, China
2. School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
3. School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Download:  HTML  PDF(968KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Passivation behavior of a deformed stainless steel in a simulated concrete pore solution was studied by means of open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), and Mott-Schottky plots. The results show that with the increasing strain, the OCP and impedance of the steel decreased, whereas the concentration of oxygen vacancy in passive films increased. This result suggests that the passivation of the stainless steel is degraded by the increasing strain. In addition, the difference in passivation between the deformed samples would not be diminished with the increasing immersion time.

Key words:  stainless steel      concrete pore solution      passivity      Mott-Schottky     

Cite this article: 

Xingguo FENG,Xiangyu LU,Yu ZUO,Da CHEN. Effect of Strain on Passivation of Stainless Steel in a Simulated Concrete Pore Solution. Journal of Chinese Society for Corrosion and protection, 2015, 35(4): 372-378.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.128     OR     https://www.jcscp.org/EN/Y2015/V35/I4/372

Fig.1  Geometry of stainless steel specimen
Fig.2  OCP results of the deformed stainless steel in simulated concrete pore solution
Fig.3  Nyquist plots of the deformed stainless steel immersed in pore solution for 1 h (a), 8 h (b), 24 h (c) and 48 h (d)
Fig.4  Bode plots of the deformed stainless steel immersed in pore solution for 1 h (a), 8 h (b), 24 h (c) and 48 h (d)
Fig.5  Equivalent electrical circuit for modeling

the impedance data

Deformation magnitude Time h Rs Ωcm2 C 10-7 Fcm-2 Rad Ωcm2 Q-Y0 (10-4 Ssncm-2) Q-n Q-Cd=Y 0(ωmax)n-1 10-4 Fcm-2 Rd 105 Ωcm2
Blank 1 3.342 1.363 10.48 1.363 0.861 3.140 1.719
8 4.621 1.187 12.01 1.137 0.884 2.285 3.142
24 4.364 0.987 14.35 1.073 0.889 2.088 7.674
48 5.324 0.922 15.96 0.991 0.898 1.823 23.970
0.6% 1 5.066 3.439 9.43 3.389 0.855 8.084 0.289
8 4.786 2.732 11.32 3.432 0.868 7.587 1.327
24 4.749 1.198 12.76 3.229 0.878 6.723 4.117
48 5.416 1.132 14.98 2.844 0.890 5.514 9.724
2.7% 1 5.569 8.887 10.69 4.338 0.855 10.323 0.306
8 4.577 6.612 11.46 4.361 0.886 8.640 0.781
24 4.546 1.807 12.76 4.036 0.864 9.100 1.839
48 4.434 1.235 13.95 4.197 0.872 9.053 7.031
Table 1  Fitted values of elements in equivalent circuit
Fig.6  Influences of deformation magnitude on the polarization resistance Rp (a) and space charge layer Cd (b) of stainless steel in simulated concrete pore solution
Fig.7  Mott-Schottky plots of deformed stainless steel after 2 h immersion in pore solution
Fig.8  Influence of deformation magnitude on the donor density of passive films on stainless steel
Fig.9  Influence of deformation magnitude on the thickness of the space charge layer
[1] Zhang W P, Shang D F, Gu X L. Stress-strain relationship of corroded steel bars[J]. J. Tongji Univ.(Nat. Sci.), 2006, 34(5): 586 (张伟平, 商登峰, 顾祥林. 锈蚀钢筋应力-应变关系研究[J]. 同济大学学报 (自然科学版), 2006, 34(5): 586)
[2] Yuan Y S, Jia F P, Cai Y. Deterioration of mechanical behavior of corroded steel bar[J]. Ind. Constr., 2000, 30(1): 43 (袁迎曙, 贾福萍, 蔡跃. 锈蚀钢筋的力学性能退化研究[J]. 工业建筑, 2000, 30(1): 43)
[3] Jaffer S J, Hansson C M. Chloride-induced corrosion products of steel in cracked-concrete subjected to different loading conditions[J]. Cem. Concr. Res., 2009, 39(2): 116
[4] Castro B P, de-Rincón O T, Moreno E I, et al. Performance of a 60-year-old concrete pier with stainless steel reinforcement[J]. Mater. Perform., 2002, 41(10): 50
[5] Veleva L, Alpuche-Aviles M A, Graves-Brook M K, et al. Voltammetry and surface analysis of AISI 316 stainless steel in chloride-containing simulated concrete pore environment[J]. J. Electroanal. Chem., 2005, 578(1): 45
[6] Knudsen A, Jensen F M, Klinghoffer O, et al. Cost-effective enhancement of durability of concrete structures by intelligent use of stainless steel reinforcemen [A]. Conference on Corrosion and Rehabilitation of Reinforced Concrete Structures [C]. Florida: 1998
[7] Valiente A. Stress corrosion failure of large diameter pressure pipelines of prestressed concrete [J]. Eng. Fail. Anal.., 2001, 8(3): 245
[8] Anhvu N, Castel A, Francois R. Effect of stress corrosion cracking on stress-strain response of steel wires used in prestressed concrete beams[J]. Corros. Sci., 2009, 51(6): 1453
[9] Gong J X, Wang H C, Li J B. Effect of loading on corrosion of reinforced concrete beam exposed in corroded environment[J]. J. Sout- heast Univ.(Nat. Sci.), 2005, 35(3): 421 (贡金鑫, 王海超, 李金波. 腐蚀环境中荷载作用对钢筋混凝土梁腐蚀的影响[J]. 东南大学学报 (自然科学版), 2005, 35(3): 421)
[10] Díaz B, Freire L, Nóvoa X R, et al. Electrochemical behaviour of high strength steel wires in the presence of chlorides[J]. Electrochim. Acta, 2009, 54(22): 5190
[11] Gadadhar S, Balasubramaniam R. On the corrosion behaviour of phosphoric irons in simulated concrete pore solution[J]. Corros. Sci., 2008, 50(1): 131
[12] Xiang Q W, Cao S, Sun D M, et al. Charavterization and cathode electrophoresis deposition of cerium modified films on Al 5083[J]. Acta Metall. Sin., 2010, 46(3): 352 (项秋伟, 曹思, 孙道明等. Al 5083表面电泳沉积稀土改性膜制备和表征[J]. 金属学报, 2010, 46(3): 352)
[13] Hsu C H, Mansfeld F. Technical note: Concerning the conversion of the constant phase element parameter Y-0 into a capacitance[J]. Corrosion, 2001, 57(9): 747
[14] Teofilo R F, Ceragioli H J, Peterlevitz A C, et al. Improvement of the electrochemical properties of "as-grown" boron-doped polycrystalline diamond electrodes deposited on tungsten wires using ethanol[J]. J. Solid State Electrochem., 2007, 11(10): 1449
[15] Wu Q, Liu Y, Du R G, et al. Electrochemical study on the effect of chloride ions on the passivity of reinforcing steel in simulated concrete pore solutions[J]. Acta Metall. Sin., 2008, 44(3): 346 (吴群, 刘玉, 杜荣归等. 氯离子对模拟混凝土孔溶液中钢筋钝性影响的电化学研究[J]. 金属学报, 2008, 44(3): 346)
[16] Li D G, Feng Y R, Bai Z Q, et al. Influence of temperature, chloride ions and chromium element on the electronic property of passive film formed on carbon steel in bicarbonate/carbonate buffer solution[J]. Electrochim. Acta, 2007, 52(28): 7877
[17] Dong Z H, Shi W, Zhang G A, et al. The role of inhibitors on the repassivation of pitting corrosion of carbon steel in synthetic carbonated concrete pore solution[J]. Electrochim. Acta, 2011, 56(17): 5890
[18] Carmezim M J, Simoes A M, Montemor M F, et al. Capacitance behaviour of passive films on ferritic and austenitic stainless steel[J]. Corros. Sci., 2005, 47(3): 581
[19] Vignal V, Oltra R, Verneaub M, et al. Influence of an elastic stress on the conductivity of passive films[J]. Mater. Sci. Eng., 2001, A303(1/2): 173
[20] Lv J L, Luo H Y. Influence of tensile pre-strain and sensitization on passive films in AISI 304 austenitic stainless steel[J]. Mater. Chem. Phys., 2012, 135(2/3): 973
[21] Gaben F, Vuillemin B, Oltra R. Influence of the chemical composition and electronic structure of passive films grown on 316L SS on their transient electrochemical behavior[J]. J. Electrochem. Soc., 2004, 151(11): B595
[22] Okamoto G. Passive film of 18-8 stainless steel structure and its function[J]. Corros. Sci., 1973, 13(6): 471
[23] James E W, Clark D. Review of the capabilities and properties of electroless plated thin film media for rigid memory disks[J]. J. Electrochem. Soc., 1990, 137(10): 3260
[24] Chao C Y, Lin L F, MacDonald D D. A point defect model for anodic passive films I. film growth kinetics[J]. J. Electrochem. Soc., 1981, 128(6): 1187
[25] MacDonald D D. The point defect model for the passive state[J]. J. Electrochem. Soc., 1992, 139(12): 3434
[26] MacDonald D D. Passivity-the key to our metals-based civilization[J]. Pure Appl. Chem., 1999, 71(6): 951
[1] LIU Xinyi, ZHAO Yazhou, ZHANG Huan, CHEN Li. Effect of Chloride Concentration in a Simulated Concrete Pore Solution on Metastable Pitting of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[2] ZHANG Huiyun, ZHENG Liuwei, MENG Xianming, LIANG Wei. Effect of Electrochemical Hydrogen Charging on Hydrogen Embrittlement Sensitivity of Cr15 Ferritic and 304 Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[3] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[4] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[5] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[6] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[7] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[8] ZHAO Baijie, FAN Yi, LI Zhenzhen, ZHANG Bowei, CHENG Xuequn. Crevice Corrosion Behavior of 316L Stainless Steel Paired with Four Different Materials[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[9] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[10] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[11] HE Zhuang,WANG Xingping,LIU Zihan,SHENG Yaoquan,MI Mengxin,CHEN Lin,ZHANG Yan,LI Yuchun. Passivation and Pitting of 316L and HR-2 Stainless Steel in Hydrochloric Acid Liquid Membrane Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[12] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[13] LUO Hong,GAO Shujun,XIAO Kui,DONG Chaofang,LI Xiaogang. Effect of Magnetron Sputtering Process Parameters on CrN Films on 304 Stainless Steel and TheirCorrosion Behavior[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[14] FU Anqing,ZHAO Mifeng,LI Chengzheng,BAI Yan,ZHU Wenjun,MA Lei,XIONG Maoxian,XIE Junfeng,LEI Xiaowei,LV Naixin. Effect of Laser Surface Melting on Microstructure and Performance of Super 13Cr Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.
[15] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
No Suggested Reading articles found!