Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (1): 49-54    DOI: 10.11902/1005.4537.2014.141
Current Issue | Archive | Adv Search |
Inhibition Performance of Benzimidazole Derivatives for Steel 45(GB) in 1 mol/L HCl Solution
WANG Qing, MA Xuemei, SHI Haiyan, YUAN Shan, GUO Jianfeng, LIANG Dong, HU Zhiyong()
College of Chemical Engineering and Environment, North University of China, Taiyuan 030051, China
Download:  HTML  PDF(1823KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Two new benzimidazole derivatives, BSC6T and BSC8T, were synthesized using 2-aminobenzimidazole and triazine anionic surfactants. Their inhibition effect on steel 45(GB) in 1 mol/L HCl solution were studied by means of mass loss method, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). Results showed that the inhibition efficiency increased significantly with the increasing inhibitor concentration; BSC6T and BSC8T acted as a mixed type inhibitors with cathodic inhibition as the dominative action; BSC6T and BSC8T had better inhibition effect rather than 2-aminobenzimidazole; however, among the three inhibitors, BSC8T exhibited the best inhibition performance with inhibition efficiency up to 98.6% for a concentration of 0.9 g/L.

Key words:  inhibitor      benzimidazole derivative      anionic surfactant      electrochemical measurement     
ZTFLH:  TG174.42  

Cite this article: 

WANG Qing, MA Xuemei, SHI Haiyan, YUAN Shan, GUO Jianfeng, LIANG Dong, HU Zhiyong. Inhibition Performance of Benzimidazole Derivatives for Steel 45(GB) in 1 mol/L HCl Solution. Journal of Chinese Society for Corrosion and protection, 2015, 35(1): 49-54.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.141     OR     https://www.jcscp.org/EN/Y2015/V35/I1/49

Fig.1  Structures of BSC6T (a) and BSC8T (b)
Fig.2  Inhibition efficiency of 45(GB) steel in 1 mol/L HCl solutions containing different concentrations of inhibitors
Fig.3  Polarization curves of 45(GB) steel in 1 mol/L HCl solutions containing different concentrations of 2-aminobenzimidazole (a), BSC6T (b) and BSC8T (c)
Inhibitor c / (gL-1) Ecorr (vs SCE) / mV Icorr / (mAcm-2) bc / (mVdec) ba / (mVdec) IE / %
2-amino-
benzimidazoe
Blank -375.8 1.960 146 107 ---
0.15 -373.9 1.350 132 98.8 31.1
0.30 -387.4 0.990 113 80.8 49.5
0.45 -420.7 0.948 142 79.8 51.6
0.60 -384.5 0.877 129 107 55.3
0.75 -397.2 0.797 131 103 59.3
0.90 -395.0 0.604 137 99.1 69.2
Blank -375.8 1.960 146 107 ---
0.15 -383.2 1.220 131 91.7 37.8
0.30 -361.6 0.940 127 84.5 52.0
BSC6T 0.45 -383.4 0.748 85.1 58.6 61.8
0.60 -383.5 0.661 149 92.0 66.3
0.75 -352.5 0.512 125 71.1 73.9
0.90 -379.0 0.359 154 71.5 81.7
Blank -375.8 1.960 146 107 ---
0.15 -405.2 0.364 195 78.7 81.4
0.30 -357.9 0.309 120 79.2 84.2
BSC8T 0.45 -358.4 0.242 121 76.2 87.7
0.60 -385.5 0.117 117 64.8 94.0
0.75 -372.3 0.116 180 85.3 94.0
0.90 -394.5 0.096 171 70.5 95.1
Table 1  Dynamic polarization parameters for 45(GB) steel in 1 mol/L HCl solutions containing different concentrations of inhibitors
Fig.4  Nyquist plots of 45(GB) steel in 1 mol/L HCl solutions containing different concentrations of 2-aminobenzimidazole (a), BSC6T (b) and BSC8T (c)
Fig.5  Equivalent circuit for EIS
Inhibitor c / (gL-1) Rs / (Ωcm2) Rct / (Ωcm2) Cdl / (μFcm-2) IE / %
Blank 1.622 7.695 687.9 ---
0.15 1.271 10.74 409.9 28.4%
0.30 1.451 11.50 240.1 33.1%
2-aminobenzimidazole 0.45 1.074 12.28 223.5 37.3%
0. 60 1.313 13.46 106.3 42.8%
0.75 1.294 16.44 102.5 53.2%
0.90 1.110 19.17 82.26 59.8%
Blank 1.622 7.695 687.9 ---
0.15 1.179 15.69 199.6 50.9%
0.30 1.116 26.89 134.1 71.4%
BSC6T 0.45 1.323 76.29 109.3 89.9%
0.60 1.166 103.4 91.33 92.6%
0.75 1.300 204.7 68.53 96.2%
0.90 1.200 329.8 17.01 97.7%
Blank 1.622 7.695 687.9 ---
0.15 1.327 41.96 280 81.7%
0.30 1.266 58.85 239 86.9%
BSC8T 0.45 1.182 80.81 31.02 90.5%
0.60 1.426 155.4 23.56 95.0%
0.75 1.498 329.5 22.25 97.7%
0.90 1.244 556.1 11.52 98.6%
Table 2  Impedance data of 45(GB) steel in 1 mol/L HCl solutions containing different concentrations of inhibitors
Fig.6  SEM images of 45(GB) steel samples before corrosion (a), and after corrosion for 24 h in 1 mol/L HCl without inhibitor (b), with 0.9 g/L 2-aminobenzimidazole (c), 0.9 g/L BSC6T (d) and 0.9 g/L BSC8T (e)
[1] Li J L, Liang C H, Huang N B, et al. Progress on research of benzimidazole derivative as corrosion inhibitor[J]. Corros. Sci. Prot. Technol., 2011, 23(2): 191
(李杰兰, 梁成浩, 黄乃宝等. 苯并咪唑衍生物缓蚀剂研究进展[J]. 腐蚀科学与防护技术, 2011, 23(2): 191)
[2] Hu J C, Li C Z, Yan Q, et al. Inhibition performance study on benzimidazole and benzimidazole derivatives[J]. Mater. Prot., 2011, 44(11): 75
(胡建春, 李春志, 严奇等. 苯并咪唑及其衍生物的缓蚀性能[J]. 材料保护, 2011, 44(11): 75)
[3] Li X X, Yang W Z. Inhibition of 1-proply-2-methly-3-alkylbenzimidazole on Q235 steel in HCl solution[J]. J. Chin. Soc. Corros. Prot., 2012, 32(2): 168
(李相旭, 杨文忠. 盐酸介质中1-丙基-2-甲基-3-烷基苯并咪唑盐对Q235钢的缓蚀作用[J]. 中国腐蚀与防护学报, 2012, 32(2): 168)
[4] Khaled K F. The inhibition of benzimidazole derivatives on corrosion of iron in 1 M HCl solutions[J]. Electrochim. Acta, 2003, 48(17): 2493
[5] Aljourani J, Raeissi K, Golozar M A. Benzimidazole and its derivatives as corrosion inhibitors for mild steel in 1 M HCl solution[J]. Corros. Sci., 2009, 51(8): 1836
[6] Zhang J, Zhao W M, Guo W Y, et al. Theoretical evaluation of corrosion inhibition performance of benzimidazole corrosion inhibitors[J]. Acta Phys.-Chim. Sin., 2008, 24(7): 1239
(张军, 赵卫民, 郭文跃等. 苯并咪唑类缓蚀剂缓蚀性能的理论评价[J]. 物理化学学报, 2008, 24(7): 1239)
[7] Popova A, Christov M, Raicheva S, et al. Adsorption and inhibitive properties of benzimidazole derivatives in acid mild steel corrosion[J]. Corros. Sci., 2004, 46(6): 1333
[8] Popova A, Christov M, Deligeorgiev T. Influence of the molecular structure on the inhibitor properties of benzimidazole derivatives on mild steel corrosion in 1 M hydrochloric acid[J]. Corrosion, 2003, 59(9): 756
[9] Li H, Qiu L G, Xie A J, et al. Adsorption and corrosion inhibition of cationic Gemini surfactants on steel surface in hydrochloric acid[J]. Corros. Sci. Prot. Technol., 2005, 17(4): 244
(刘卉, 裘灵光, 谢安建等. 盐酸溶液中阳离子Gemini表面活性剂在碳钢表面的吸附与缓蚀性能研究[J]. 腐蚀科学与防护技术, 2005, 17(4): 244)
[10] Michael L F. Understanding the effect of surfactant aggrega-tion on corrosion inhibition of mild steel in acidic medium[J]. Corros. Sci., 2002, 44: 2865
[11] Li X H, Deng S D, Xie X G. Experimental and theoretical study on corrosion inhibition of oxime compounds for aluminium in HCl solution[J]. Corros. Sci., 2014, 81: 162
[12] Pauline S A, Sahila S, Gopalakrishnan C, et al. Synthesis, characterization and corrosion protection property of terpolymers derived from poly (MAn-co-MMA) containing benzimidazole derivative as pendant group[J]. Prog. Org. Coat., 2011, 72(3): 443
[13] Sun M Q, Ge J J, Zhang G C, et al. Relationship between molecular structure of imidazoline and its corrosion inhibition performance in salty solution with saturated CO2[J]. Petrochem. Technol., 2005, 34(12): 1177
(孙铭勤, 葛际江, 张贵才等. 饱和CO2盐水中咪唑啉分子结构与其缓蚀性能的关系[J]. 石油化工, 2005, 34(12): 1177)
[14] Cao C N. Principles of Electrochemistry of Corrosion[M]. Beijing: Chemical Industry Press, 2008
(曹楚南. 腐蚀电化学原理[M]. 北京: 化学工业出版社, 2008)
[1] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] SHAO Minglu, LIU Dexin, ZHU Tongyu, LIAO Bichao. Preparation of Urotropine Quaternary Ammonium Salt and Its Complex as Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[4] JIA Qiaoyan, WANG Bei, WANG Yun, ZHANG Lei, WANG Qing, YAO Haiyuan, LI Qingping, LU Minxu. Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[5] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[6] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[7] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[8] Shaokun YAN,Dajiang ZHENG,Jiang WEI,Guangling SONG,Lian ZHOU. Electrochemical Activation of Passivated Pure Titanium in Artificial Seawater[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[9] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[10] Jianguo LIU,Ge GAO,Yazhou XU,Zili LI,Wanran JI. Corrosion Inhibition Performance of Imidazoline Derivatives[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[11] Yaqiong LI,Jingling MA,Guangxin WANG,Yujie ZHU,Yongfa SONG,Jingli ZHANG. Effect of Sodium Phosphate and Sodium Dodecylbenzene-sulfonate on Discharge Performance of AZ31 Magnesium Air Battery[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[12] Yunxiang CHEN, Lijuan FENG, Jianbin CAI, Xuan WANG, Yicheng HONG, Deyuan LIN, Jianhuang ZHUANG, Huaiyu YANG. Inhibition Effect of a New Composite Organic Inhibitor on Corrosion of Steel Rebar in Simulated Concrete Solution or Inside Mortar Specimen[J]. 中国腐蚀与防护学报, 2018, 38(4): 343-350.
[13] Jingling MA, Shuai TONG, Fengzhang REN, Guangxin WANG, Yaqiong LI, Jiuba WEN. Influences of Inhibitor L-Cysteine/zinc Oxide on Electrochemical Performance of 3102 Al-alloy in Alkaline Solution[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[14] Wanjun PENG, Jiheng DING, Hao CHEN, Haibin YU. Corrosion Inhibition of Bio-based Inhibitor Furfuryl Glycidyl Ether[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[15] Bei QIAN, Chengbao LIU, Zuwei SONG, Junfeng REN. Anticorrosion Performance of Epoxy Coating Modified with Nanocontainers[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
No Suggested Reading articles found!