Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (1): 43-48    DOI: 10.11902/1005.4537.2014.001
Current Issue | Archive | Adv Search |
Gray Relationship Analysis Methods for Effect of Crude Oil Properties on Corrosion Behavior of 16Mn Steel
ZHANG Yanfei1, CHEN Xu1(), HE Chuan1, CHEN Yu1, WANG Guangfu1, ZHANG Yugang2
1. College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China
2. Chinese Petroleum Corporation Jinzhou Company, Jinzhou 121001, China
Download:  HTML  PDF(462KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Effect of crude oil properties on the corrosion behavior of 16Mn steel was evaluated by means of grey relationship analysis method. The mass of the effect of each corrosive factor related with the main properties of crude oils on the corrosion rate of 16Mn steel was analyzed by hierarchy process. Results showed that the mass of corrosive factors of the crude oil could be accessed as:salinity (0.51), sulphur content (0.264), nitrogen content (0.129), water content (0.064) and acid value (0.033) respectively. Then the corrosivity of crude oils could be evaluated by comprehensive analysis of the corrosive factors and their weight: correspondingly the corrosivity of crude oils from 6 selected regions could be ranked with a descending sequence as follows: Liao River>Palanca>Huizhou, Jinzhou>Daqing>Shenbei.

Key words:  crude oil property      16Mn steel      corrosion      gray relationship analysis      hierarchy analysis process     
ZTFLH:  TG174  

Cite this article: 

ZHANG Yanfei, CHEN Xu, HE Chuan, CHEN Yu, WANG Guangfu, ZHANG Yugang. Gray Relationship Analysis Methods for Effect of Crude Oil Properties on Corrosion Behavior of 16Mn Steel. Journal of Chinese Society for Corrosion and protection, 2015, 35(1): 43-48.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.001     OR     https://www.jcscp.org/EN/Y2015/V35/I1/43

Area Saltcontent
mg/L
Sulfur content
% (m/m)
Water content
% (m/m)
Nitrogen content
mg/kg
Acid value
mg KOH/g
Corrosion rate mm/a
Shenbei 3.10 0.158 0.001 0.001 0.26 3.32×10-2
Daqing 5.00 1.200 0.300 1.950 0.09 2.49×10-2
Liao River 16.60 3.200 1.300 6.487 2.78 3.30×10-2
Huizhou 46.38 0.600 0.001 0.120 0.11 4.64×10-2
Palanca 67.90 3.200 0.001 0.120 0.07 4.20×10-2
Jinzhou 12.60 1.800 0.001 2.140 0.60 2.22×10-2
Table 1  Properties of crude oils produced at various areas and the corresponding corrosion rate of 16Mn steel
Corrosion factors Yi Y0
Area
Salt content
mg/L
Sulfur content
% (m/m)
Water content
% (m/m)
Nitrogen content mg/kg Acid value
mg KOH/g
Corrosion rates mm/a
Shenbei 0.088 0.097 0.001 4.917×10-4 0.29 9.47×10-1
Daqing 0.143 0.733 0.362 0.959 0.10 7.11×10-1
Liao River 0.474 1.955 1.568 3.190 3.07 9.40×10-1
Huizhou 1.324 0.367 0.001 0.059 0.12 1.32
Palanca 1.938 1.955 0.001 0.059 0.08 1.20
Jinzhou 0.360 1.100 0.001 1.052 0.66 6.35×10-1
Table 2  Treatment result by equalization
ξ Salt
mg/L
Sulfur content
% (m/m)
Water content
% (m/m)
Nitrogen content
mg/kg
Acid value
mg KOH/g
Shenbei (ξ1) 0.710 0.712 0.689 0.689 0.76
Daqing (ξ2) 0.801 1.000 0.871 0.907 0.79
Liao River (ξ3) 0.860 0.707 0.808 0.504 0.52
Huizhou (ξ4) 1.000 0.662 0.586 0.597 0.61
Palanca (ξ5) 0.770 0.765 0.657 0.669 0.67
Jinzhou (ξ6) 0.901 0.837 0.788 0.852 1.00
Table 3  Correlation coefficients of crude oil properties and corrosion rate
[1] Xu Z D, Shan S L. Corrosion and protection of refinery process units for processing sour crude[J]. Corros. Sci. Prot. Technol., 2006, 18(4): 250
(徐志达, 单石灵. 加工含硫原油的设备腐蚀与对策[J]. 腐蚀科学与防护技术, 2006, 18(4): 250)
[2] Zhou P R, Jia P L, Xu S Q, et al. Corrosion protection technologies in processing crude oils[J]. Total Corros. Control, 2003, 17(3): 1
(周培荣, 贾鹏林, 许适群等. 加工高硫原油与高酸原油的防腐蚀技术[J]. 全面腐蚀控制, 2003, 17(3): 1)
[3] Li C S. Corrosion and prevention of equipments of processing high-acid crude oil units[J]. Total Corros. Control, 2004, 18(1): 6
(李春树. 加工高酸值原油装置设备腐蚀与防护[J]. 全面腐蚀控制, 2004, 18(1): 6)
[4] Chen C G, Liu P F, Wu L, et al. Analysis and thinking about high-sulfur crude oilimported via shandong port[J]. Int. Petrol. Econ.,2012, 20(3): 67
(陈春光, 刘平飞, 吴量等. 山东口岸进口高硫原油分析及思考[J]. 国际石油经济, 2012, 20(3): 67)
[5] Tang S X, Zhang J H. Discussion on the efficiency of high sulfur crude oil processing[J]. Int. Petrol. Econ., 2002, 10(5): 35
(唐苏欣, 张建华. 关于高硫原油加工效益的探讨[J]. 国际石油经济, 2002, 10(5): 35)
[6] Deng J L. Gray Forecast and Decision-making[M]. Wuhan: Press of Huazhong University of Science and Technology, 1992
(邓聚龙. 灰色预测与决策[M]. 湖北: 华中理工大学出版社, 1992)
[7] Jiang H Y, Yao A L, Song X J, et al. Risk assessment technique of buried gas transmission lines' corrosion[J]. J. Chengdu Univ.(Nat. Sci.), 2010, 29(3): 75
(蒋宏业, 姚安林, 宋小建等. 埋地输气管道腐蚀风险评价技术研究[J]. 成都大学学报 (自然科学版), 2010, 29(3): 75)
[8] Zhu X R, Yu C J, Zhang J. Crey relationship space analysis on main environmental factors for sea-water corrosion of aluminiu alloys[J]. Corros. Sci. Prot. Technol., 2001, 13(1): 9
(朱相荣, 郁春娟, 张晶. Al 合金海水腐蚀与环境因素的灰关联分析[J]. 腐蚀科学与防护技术, 2001, 13(1): 9)
[9] Li K X, Shao B L, Liu H. A renovated method of fire risk evaluation of large emporium based on ANN and grey correlation[J]. J. Saf. Environ., 2013, 13(1): 254
(李柯萱, 邵必林, 刘浩. 基于灰关联和神经网络的大型商场火灾风险评价方法[J]. 安全与环境学报, 2013, 13(1): 254)
[10] Qu C T, Lu H X, Po S F. Gray relational analysis for m ain factors ofcorrosion in Wen-1 sewage treatment plant[J]. Corros. Sci. Prot. Technol., 2005, 17(3): 198
(屈撑囤, 卢会霞, 卜绍峰. 灰关联分析法研究中原油田文-污水的腐蚀因素[J]. 腐蚀科学与防护技术, 2005, 17(3): 198)
[11] Zhu X R, Zhang Q F. Study on dependence of seawatercorrosivity on environmental factorsby grey relational space analysis[J]. J. Chin. Soc. Corros. Prot., 2000, 20(1): 30
(朱相荣, 张启富. 灰关联分析法探讨环境因素与海水腐蚀性的关系[J]. 中国腐蚀与防护学报, 2000, 20(1): 30)
[12] Li Y F, Tao C C, Lin C Y, et al. Application of improved analytic hierarchy process in corrosion rate forecasting of water supplying pipe[J]. J. Shenyang Jianzhu Univ.(Nat. Sci.), 2010, 26(4): 729
(李亚峰, 陶翠翠, 林长宇等. 改进层次分析法在给水管道腐蚀速率预测中的应用[J]. 沈阳建筑大学学报 (自然科学版), 2010, 26(4): 729)
[13] Cao C N. Materials Natural Environmental Corrosion in Chinese[M]. Beijing: Chemical Industry Press, 2005
(曹楚南. 中国材料的自然环境腐蚀[M]. 北京: 化学工业出版社, 2005)
[14] Liang P, Du C W, Li X G, et al. Grey relational space analysis of effect of environmental factors on corrosion resistance of X70 pipeline steel in Yingtan soil simulated solution[J]. Corros. Prot., 2009, 30(4): 230
(梁平, 杜翠薇, 李晓刚等. X70管线钢在鹰潭土壤模拟溶液中腐蚀因素灰关联分析[J]. 腐蚀与防护, 2009, 30(4): 230)
[15] Liang P, Du C W, Yu J. Analysis of factors on soil corrosion for buried Q235 steel in ku'erle region[J]. Corros. Sci. Prot. Technol., 2010, 22(3): 146
(梁平, 杜翠薇, 余杰等. Q235钢在库尔勒地区土壤腐蚀性的影响因素分析[J]. 腐蚀科学与防护技术, 2010, 22(3): 146)
[16] Mobin M, Malik A U, Al-Muaili F. Stress corrosion cracking and oil leakage in a control oilpiping system[J]. J. Fail. Anal. Prevent., 2009, 9(5): 409
[17] An J, Su Z G, Gao X X, et al. Corrosion characteristics of boronized AISI 8620 steel in oil field water containing H2S[J]. Prot. Met. Phys. Chem. Surf., 2012, 48(4): 487
[18] Chen B F, Yang Q M. Kinetics analysis of naphthenic acid corrosion of alloy steels for atmospheric and vacuum equipment[J]. Corros. Sci. Prot. Technol., 2007, 19(1): 74
(陈碧凤, 杨启明. 常减压设备环烷酸腐蚀分析[J]. 腐蚀科学与防护技术, 2007, 19(1): 74)
[1] GE Pengli, ZENG Wenguang, XIAO Wenwen, GAO Duolong, ZHANG Jiangjiang, LI Fang. Effect of Applied Stress and Medium Flow on Corrosion Behavior of Carbon Steel in H2S/CO2 Coexisting Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[2] HE Jing, YANG Chuntian, LI Zhong. Research Progress of Microbiologically Influenced Corrosion and Protection in Building Industry[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[3] ZHANG Yifan, YUAN Xiaoguang, HUANG Hongjun, ZUO Xiaojiao, CHENG Yulin. Corrosion Behavior of Cu-Al Laminated Board in Neutral Salt Fog Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[4] LI Chengyuan, CHEN Xu, HE Chuan, LI Hongjin, PAN Xin. Alternating Current Induced Corrosion of Buried Metal Pipeline: A Review[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[5] MING Nanxi, WANG Qishan, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Temperature on Corrosion Behavior of X70 Steel in an Artificial CO2-containing Formation Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[6] WANG Kuntai, CHEN Fu, LI Huan, LUO Mina, HE Jie, LIAO Zihan. Corrosion Behavior of L245 Pipeline Steel in Shale Gas Fracturing Produced Water Containing Iron Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[7] QIAO Jisen, XIA Zonghui, LIU Libo, XU Jiamin, LIU Xudong. Corrosion Resistance of Aluminum-magnesium Bimetal Composite Material Prepared by Isothermal Indirect Extrusion[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[8] HUANG Tao, XU Chunxiang, YANG Lijing, LI Fuxia, JIA Qinggong, KUAN Jun, ZHANG Zhengwei, WU Xiaofeng, WANG Zhongqi. Effect of Zr Addition on Microstructure and Corrosion Behavior of Mg-3Zn-1Y Alloys[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[9] JIANG Bochen, CAO Jiangdong, CAO Xueyu, WANG Jiantao, ZHANG Shaopeng. Hot Corrosion Behavior of Gd2(Zr1-xCex)2O7 Thermal Barrier Coating Ceramics Exposed to Artificial Particulates of CMAS[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[10] CAO Jingyi, YANG Yange, FANG Zhigang, SHOU Haiming, LI Liang, FENG Yafei, WANG Xingqi, CHU Guangzhe, ZHAO Yi. Failure Behavior of Fresh Water Tank Coating in Different Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[11] LUAN Hao, MENG Fandi, LIU Li, CUI Yu, LIU Rui, ZHENG Hongpeng, WANG Fuhui. Preparation and Anticorrosion Performance of M-phenylenediamine-graphene Oxide/Organic Coating[J]. 中国腐蚀与防护学报, 2021, 41(2): 161-168.
[12] CAO Jingyi, FANG Zhigang, FENG Yafei, LI Liang, YANG Yange, SHOU Haiming, WANG Xingqi, ZANG Bolin. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Reverse Osmosis Water and Conditioned Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[13] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[14] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[15] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
No Suggested Reading articles found!