Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (3): 303-308    DOI: 10.11902/1005.4537.2017.098
Current Issue | Archive | Adv Search |
Corrosion Inhibition of Bio-based Inhibitor Furfuryl Glycidyl Ether
Wanjun PENG1,2, Jiheng DING1, Hao CHEN1,3, Haibin YU1()
1 Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Key Laboratory of Marine New Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
2 College of Materials Science and Engineering, Hunan University, Changsha 410006, China
3 School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315201, China
Download:  HTML  PDF(1476KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

On the basis of previous studies on bio-based furan inhibitors, the corrosion behavior of Q235 carbon steel in different concentration of hydrochloric acid solutions with FGE was studied by means of corrosion weight-loss measurement, Tafel polarization curve measurement and electrochemical impedance spectroscopy (EIS). Results show that when the concentration of FGE is 4.92×10-4 molL-1, the inhibition effect for Q235 carbon steel achieves the optimum with the inhibition efficiency of more than 94.0% and the corrosion rate of 0.076 mgcm-2h-1. In addition, it is proved that the adsorption process of FGE on Q235 carbon steel is in accord with the Langmuir adsorption model, which is the result of the interaction of physical adsorption and chemical adsorption.

Key words:  Bio-based      Furan inhibitor      FGE      Q235 carbon steel      Langmuir adsorption model     
Received:  28 June 2017     
ZTFLH:  TG174.4  
Fund: Supported by China Postdoctoral Science Foundation (2015A610048)

Cite this article: 

Wanjun PENG, Jiheng DING, Hao CHEN, Haibin YU. Corrosion Inhibition of Bio-based Inhibitor Furfuryl Glycidyl Ether. Journal of Chinese Society for Corrosion and protection, 2018, 38(3): 303-308.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.098     OR     https://www.jcscp.org/EN/Y2018/V38/I3/303

Fig.1  Three electrode test system of electrochemical working station
Fig.2  Polarization curves of Q235 carbon steel soaked in 0.5 mol/L hydrochloric acid solution with different concentrations of FGE for 3 h
FGE mol·L-1 -EcorrmV βaV·dec-1 -βcV·dec-1 IcorrμA·cm-2 RpΩ·cm-2
0 543 12.46 10.13 112.40 171
1.64×10-4 536 10.56 7.18 26.43 927
3.28×10-4 553 6.78 4.30 16.98 2312
4.92×10-4 564 7.80 5.04 11.74 2883
6.56×10-4 545 8.12 4.99 19.83 1672
Table 1  Electrochemical parameters obtained by fitting Tafel curves
Fig.3  AC impedance spectra of Q235 carbon steel immersed in 0.5 mol/L hydrochloric acid solution with different concentrations of FGE for 3 h (a) and corresponding equivalent circuit diagram (b)
FGEmol·L-1 RsΩ·cm2 QdlμF·cm2·Hz1-n n RctΩ·cm2 PE%
0 3.27 1.45×10-4 0.81 1.33×102 ---
1.64×10-4 4.71 4.20×10-5 0.76 9.26×102 81.6
3.28×10-4 5.13 3.20×10-5 0.60 1.84×103 92.7
4.92×10-4 3.35 1.50×10-5 0.63 2.22×103 94.0
6.56×10-4 3.34 3.40×10-5 0.72 1.57×103 91.5
Table 2  Fitting electrochemical parameters of EIS
FGE / mol·L-1 V / mg·cm-2·h-1 θ CR / %
0 1.164 --- ---
1.64×10-4 0.201 0.827 82.7
3.28×10-4 0.076 0.935 93.5
4.92×10-4 0.043 0.963 96.3
6.56×10-4 0.093 0.920 92.0
Table 3  Mass loss test results of Q235 carbon steel in 0.5 mol/L hydrochloric acid solution with different concentrations of FGE
Fig.4  SEM images of Q235 carbon steel after soaking for 3 h in hydrochloric acid solutions with (a) and without (b) 4.92×10-4 mol/L FGE
C / molL-1 Kads / L·mol-1 ΔG 0ads / kJ·mol-1
0 --- ---
1.64×10-4 2.91×104 -3.54×104
3.28×10-4 4.39×104 -3.64×104
4.92×10-4 5.29×104 -3.69×104
6.56×10-4 1.75×104 -2.82×104
Table 4  Adsorption parameters of FGE on Q235 carbon steel
Fig.5  Langmuir adsorption isotherm of FGE (a) and adsorption mechanism of FGE on Q235 carbonsteel (b)
[1] Zuo X, Jiang Y F, Chi T, et al.Synthesis and performance of new benzotriazole derivatives with long alkyl chain as corrosion inhibitors[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 415(左翔, 蒋裕丰, 迟挺等. 新型含长链烷基苯并三唑缓蚀剂的制备与性能研究[J]. 中国腐蚀与防护学报, 2016, 36: 415)
[2] Wang C X, Chen J P, Zhang X H, et al.Corrosion inhibition of octyl isoquinolinium bromide on Q235 carbon steel in HCl solution[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 245(王春霞, 陈敬平, 张晓红等. 溴化N-辛烷异喹啉在盐酸溶液中对Q235碳钢的缓蚀行为[J]. 中国腐蚀与防护学报, 2016, 36: 245)
[3] Chidiebere M A, Oguzie E E, Liu L, et al.Corrosion inhibition of Q235 mild steel in 0.5 M H2SO4 solution by phytic acid and synergistic iodide additives[J]. Ind. Eng. Chem. Res., 2014, 53: 7670
[4] Flores E A, Olivares O, Likhanova N V, et al.Sodium phthalamates as corrosion inhibitors for carbon steel in aqueous hydrochloric acid solution[J]. Corros. Sci., 2011, 53: 3899
[5] Hegazy M A, El-Tabei A S, Bedair A H, et al. An investigation of three novel nonionic surfactants as corrosion inhibitor for carbon steel in 0.5 M H2SO4[J]. Corros. Sci., 2012, 54: 219
[6] Nam N D, Thang V Q, Hoai N T, et al.Yttrium 3-(4-nitrophenyl)-2-propenoate used as inhibitor against copper alloy corrosion in 0.1 M NaCl solution[J]. Corros. Sci., 2016, 112: 451
[7] Zhang J, Gong X L, Yu H H, et al.The inhibition mechanism of imidazoline phosphate inhibitor for Q235 steel in hydrochloric acid medium[J]. Corros. Sci., 2011, 53: 3324
[8] De Souza F S, Spinelli A. Caffeic acid as a green corrosion inhibitor for mild steel[J]. Corros. Sci., 2009, 51: 642
[9] Hu J Y, Zeng D Z, Zhang Z, et al.2-Hydroxy-4-methoxy-acetophenone as an environment-friendly corrosion inhibitor for AZ91D magnesium alloy[J]. Corros. Sci., 2013, 74: 35
[10] Wang H Y, Wei Y H, Du H Y, et al.Corrosion inhibition and adsorption behavior of green corrosion inhibitor SDDTC on AZ31B Mg-alloy[J]. J. Chin. Soc. Corros. Prot., 2018, 38: 62(王海媛, 卫英慧, 杜华云等. 绿色缓蚀剂SDDTC对AZ31B镁合金的缓蚀作用及吸附行为[J]. 中国腐蚀与防护学报, 2018, 38: 62)
[11] Vishwanatham S, Haldar N.Furfuryl alcohol as corrosion inhibitor for N80 steel in hydrochloric acid[J]. Corros. Sci., 2008, 50: 2999
[12] Zhang B R, Zhang L, Li F T, et al.Testing the formation of Ca-phosphonate precipitates and evaluating the anionic polymers as Ca-phosphonate precipitates and CaCO3 scale inhibitor in simulated cooling water[J]. Corros. Sci., 2010, 52: 3883
[13] Chen W, Wang C P, Chen C M, et al.Corrosion inhibition of equisetum ramosissimum extractive for carbon steel in hydrochloric acid solution[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 177(陈文, 管春平, 杨申明等. 节节草提取物在盐酸介质中对碳钢的缓蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36: 177)
[14] Li B L.Furan Derivatives: An emerging class of organic semiconductors[J]. Chin. J. Org. Chem., 2015, 35: 2487(李保林. 呋喃衍生物: 一类新兴的有机半导体材料[J]. 有机化学, 2015, 35: 2487)
[15] Chen X X, Dam M A, Ono K, et al.A thermally re-mendable cross-linked polymeric material[J]. Science, 2002, 295: 1698
[16] Karami Z, Zohuriaan-Mehr M J, Rostami A. Bio-based thermo-healable non-isocyanate polyurethane DA network in comparison with its epoxy counterpart[J]. J. CO2 Util., 2017, 18: 294
[17] Elschner T, Obst F, Stana-Kleinschek K, et al.Synthesis and film formation of furfuryl- and maleimido carbonic acid derivatives of dextran[J]. Carbohydr. Polym., 2017, 161: 1
[18] France S C D. Bulletin de la Société chimique de France. Sér. 5, Mémoires [M]. Paris: Nabu Press, 1946
[19] Yan X C, Zhao H, Luo M D, et al.Quantum chemistry study on inhibition mechanism of furan and its derivatives for aluminium[J]. J. Chin. Soc. Corros. Prot., 1999, 19: 372(颜肖慈, 赵红, 罗明道等. 呋喃及其衍生物对铝缓蚀机理的量子化学研究[J]. 中国腐蚀与防护学报, 1999, 19: 372)
[20] Ding J H, Peng W J, Luo T, et al.Study on the curing reaction kinetics of a novel epoxy system[J]. RSC Adv., 2017, 7: 6981
[21] Zhang H H, Xie Y, Yang Z N.Corrosion inhibition of 2-hydroxy-4-methoxy benzaldehydethiosemicarbazone for mild steel[J]. Appl. Chem. Ind., 2014, 43: 1973(张红红, 谢彦, 杨仲年. 2-羟基-4-甲氧基苯甲醛缩氨基硫脲对碳钢的缓蚀作用[J]. 应用化工, 2014, 43: 1973)
[22] Zhao H R, Su S P, Yu H B.Corrosion inhibition performance of aniline trimer for carbon steel in HCl solution[J]. Mater. Prot., 2016, 49(11): 13(赵红冉, 苏胜培, 余海斌. 苯胺三聚体对碳钢在盐酸溶液中的缓蚀性能[J]. 材料保护, 2016, 49(11): 13)
[23] Shivakumar S S, Mohana K N.Centella asiatica extracts as green corrosion inhibitor for mild steel in 0.5 M sulphuric acid medium[J]. Adv. Appl. Sci. Res., 2012, 3: 3097
[1] Jie ZHANG, Xiuhua HU, Chuanbo ZHENG, Jizhou DUAN, Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in Marine Microalgae Containing Medium[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[2] Yongsheng HAO,Abdullahi SANI Luqman,Lixin SONG,Guobao XU,Tiejun GE,Qinghong FANG. Corrosion Inhibition Effect of Phytic Acid Conversion Coating Formed on Q235 Carbon Steel in Acidic and Neutral Solutions[J]. 中国腐蚀与防护学报, 2016, 36(6): 549-558.
[3] Hongwei LIU,Fuping XIONG,Yalin LV,Chengxuan GE,Hongfang LIU,Yulong HU. CO2 Corrosion Inhibition of Carbon Steel by Dodecylamine under Flow Conditions[J]. 中国腐蚀与防护学报, 2016, 36(6): 645-651.
[4] Tao XIAO,Moradi Masoumeh,Zhenlun SONG,Lijing YANG,Tao YAN,Lifeng HOU. Inhibition Effect of Exopolysaccharide of Vibrio Neocaledonicus sp. on Q235 Carbon Steel inSulphuric Acid Solution[J]. 中国腐蚀与防护学报, 2016, 36(2): 150-156.
[5] Jiangwei WANG,Jie ZHANG,Shougang CHEN,Jizhou DUAN,Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in f/2 Culture Medium with Amphora[J]. 中国腐蚀与防护学报, 2015, 35(6): 535-542.
[6] DING Qichen, CHEN Shang. Corrosion Inhibition of Poly N-vinyl Imidazole for Q235 Steel in HCl Solution[J]. 中国腐蚀与防护学报, 2015, 35(1): 55-60.
[7] WU Jun, WANG Xiujing, LUO Rui, ZHANG Sanping, ZHOU Jianlong. Influence of Environmental Alternation on Early Stage Corrosion of Q235 and 09CuPCrNi-A Steel[J]. 中国腐蚀与防护学报, 2014, 34(5): 465-471.
[8] . GALVANIC CORROSION BEHAVIORS OF Q235-304L COUPLE IN Na2S SOLUTION[J]. 中国腐蚀与防护学报, 2006, 26(5): 308-314 .
No Suggested Reading articles found!