Please wait a minute...
J Chin Soc Corr Pro  2012, Vol. 32 Issue (2): 146-150    DOI:
Current Issue | Archive | Adv Search |
ELECTROCHEMICAL BEHAVIOR OF ALLOY 690 IN NaCl SOLUTION
QIAO Yanxin, REN Ai, LIU Feihua
Suzhou Nuclear Power Research Institute, Suzhou 215004
Download:  PDF(569KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The electrochemical behavior of alloy 690 in NaCl were investigated by means of potentiodynamic polarization curves, electrochemical impendence spectrum and current-time transient curves. Alloy 690 exhibited anodic passivation behavior in tested solution. The corrosion rate of alloy 690 increased with the increase of NaCl concentration in tested solution. The passive film of alloy 690 formed in 1% NaCl was relatively compact compared with that in 0.1% NaCl at applied potential of 0.2 V. The corrosion current density of alloy 690 in 1% NaCl (Ip1) was higher than that in 0.1% NaCl (Ip2) when passivation periods less than 1096 s. The value of I p1 was lower than Ip2 when passivation periods longer than 1096 s.
Key words:  alloy 690      corrosion      electrochemical      passive film     
Received:  07 December 2010     
ZTFLH: 

TG172.5

 
Corresponding Authors:  QIAO Yanxin     E-mail:  qiaoyanxin2009@cgnpc.com.cn

Cite this article: 

QIAO Yanxin, REN Ai, LIU Feihua. ELECTROCHEMICAL BEHAVIOR OF ALLOY 690 IN NaCl SOLUTION. J Chin Soc Corr Pro, 2012, 32(2): 146-150.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2012/V32/I2/146

[1] Dong Y, Gao Z Y. Development of nuclear power industry and research of alloy Inconel 690 in China [J]. Special Steel Technol.,2004, 9(3): 45-48

    (董毅, 高志远.我国核电事业的发展与Inconel690合金的研制[J]. 特钢技术, 2004, 9(3):45-48)

[2] Huang F, Wang J Q, Han E H, et al. Effect of Cl- concentration and temperature on the corrosion behavior of alloy 690 in borate buffer-solution[J]. Acta Metall. Sin., 2011, 47(7):809-815

    (黄发, 王俭秋, 韩恩厚等.硼酸缓冲溶液中Cl-浓度和温度对690合金腐蚀行为的影响[J].金属学报, 2011, 47(7): 809-815)

[3] Hu Y S, Wang J Q, Ke W, et al. Corrosion behavior of alloy 690TT in high temparature lead-containing caustic solution[J]. J.Chin. Soc. Corros. Prot., 2010, 30(6): 427-432

    (胡轶嵩,王俭秋, 柯伟等. 690TT合金在高温含铅碱液中的腐蚀行为[J].中国腐蚀与防护学报, 2010, 30(6): 427-432)

[4] Yu Y F, Wang H, Hu S L. Some corrosion problems of alloy 690TT in special environments[J]. J. Chin. Soc. Corros. Prot., 2010,30(3): 251-256

    (余远方, 王辉, 胡石林.690TT合金在特殊环境下的腐蚀问题[J]. 中国腐蚀与防护学报, 2010, 30(3):251-256)

[5] Liu S E, Zhu Z Y, Ke W, et al. The influence of chemical composition and microstructure on corrosion behavior[J]. Corros.Sci. Prot. Technol., 1995, 7(2): 146-150

    (刘素娥, 朱自勇,柯伟等. 690合金的成分和显微组织对腐蚀行为的影响[J].腐蚀科学与防护技术, 1995, 7(2): 146-150)

[6] Rooyen D V. Review of the stress corrosion cracking of Inconel 600[J]. Corrosion, 1975, 31: 327

[7] Terachi T, Fujii K, Arioka K. Microstructure characterization of SCC crack tip and oxide film for SUS 316 stainless steel in simulated PWR primary water at 320 degree C[J].J. Nucl. Sci. Technol., 2005, 42: 225-232

[8] Panter J, Viguier B, Cloue J M, et al. Influence of oxide films on primary water stress corrosion cracking initiation of alloy 600[J]. J. Nucl. Mater., 2006, 348: 213-221

[9] Machet A, Galtayries A, Zanna S L K, et al. XPS and STM study of the growth and structure of passive films in high temperature water on a nickel-base alloy[J]. Electrochim. Acta,2004, 49: 3957-3964

[10] Lemire R J, McRae G A. The corrosion of Alloy 690 in high-temperature aqueous media-thermodynamic considerations[J]. J.Nucl. Mater., 2001, 294: 141-147

[11] Bosch R W, Feron D, Celis J P.Electrochemistry in Light Water Reactors, Reference Electrodes,Measurement, Corrosion and Tribocorrosion Issues[M]. Cambridge:Woodhead Publishing in Materials, 2007

[12] Gavele J R, Torrest R M, Carranza R M. Passivity breakdown, its relation to pitting and stress-corrosion-cracking processes[J]. Corros. Sci., 1990, 31: 563-571

[13] Pistorius P C, Burstein G T. Growth of corrosion pits on stainless steel in chloride solution containing dilute sulphate[J].Corros. Sci., 1992, 33: 1885-1897

[14] Chen Y Y, Chou L B, Shih H C. Factors affecting the electrochemical behavior and stress corrosion cracking of Alloy 690 in chloride environments[J]. Mater. Chem. Phys., 2006, 97: 37-49

[15~]} Briceno D G, Castano M L, Garcia M S. Stress corrosion cracking susceptibility of steam generator tube materials in AVT (all volatile treatment) chemistry contaminated with lead[J]. Nucl. Eng. Des., 1996, 165: 161-169

[16] Qiao Y X, Zheng Y G, Ke W, et al. Electrochemical behavior of high nitrogen stainless steel in acidic solutions[J].Corros. Sci., 2009, 51: 979-986

[17] Li C, Du C W, Li Z Y, et al. Characteristic of electrochemical impedance spectroscopy for X100 pipeline steel in water-saturated acidic soil[J]. J. Chin. Soc. Corros. Prot., 2011,31(5): 377-380

     (李超, 杜翠薇, 刘智勇等.X100管线钢在水饱和酸性土壤中的电化学阻抗谱特征[J].中国腐蚀与防护学报, 2011, 31(5): 377-380)

[18] Hassan H H. Effect of chloride ions on the corrosion behavior of steel in 0.1 M citrate[J]. Electrochim. Acta, 2005, 51:526-535

[19] Szklarska S Z. Pitting corrosion of aluminum[J]. Corros.Sci., 1998, 41: 1743-1767

[20] Newman R C, Shahrabi T. The effect of alloyed nitrogen or dissolved nitrate ions on the anodic behavior of austenitic stainless steel in hydrochloric acid[J]. Corros. Sci., 1987, 27:827-838

[21] Hoar T P. The production and breakdown of the passivity of metals[J]. Corros. Sci., 1967, 7: 341-355

[22] Wallinder D, Pan J, Leygraf C, et al. EIS and XPS study of surface modification of 316LVM stainless steel after passivation[J]. Corros. Sci., 1998, 41: 275-289\par
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DAI Ting, GU Yanhong, GAO Hui, LIU Kailong, XIE Xiaohui, JIAO Xiangdong. Electrochemical Performance of Underwater Friction Stud Welding Joint in CO2 Saturated NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[3] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[4] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[5] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[6] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[7] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[8] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[9] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[10] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[11] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[12] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[13] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[14] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[15] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
No Suggested Reading articles found!