Please wait a minute...
J Chin Soc Corr Pro  2011, Vol. 31 Issue (4): 250-254    DOI:
Review Current Issue | Archive | Adv Search |
CURRENT STATUS AND FUTURE OF RESEARCH ON CORROSION FOR LEAD-FREE SOLDER MATERIALS
WANG Mingna1, WANG Jianqiu1, FENG Hao2, KE Wei1
1. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2. State Key Laboratory of Environment Adaptability for Industrial Products, China National Electric Apparatus Research Institute, Guangzhou 510300
Download:  PDF(441KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Corrosion performance of Sn-Ag, Sn-Cu, Sn-Ag-Cu and Sn-Zn lead-free solders are examined in this paper. The previous investigations were only focused on the solder itself, however, during the soldering process the solder was melted and then solidified. Compared to original solder material, the microstructure and chemistry of the solidified solder may change, which will affect the corrosion behavior of the solder during service in aggressive environment. So the investigation in the future should focus on the corrosion behavior of the solder joint used in aggressive environment.
Key words:  lead-free solder      corrosion      oxidation     
Received:  21 May 2010     
ZTFLH: 

TG172

 
Corresponding Authors:  Ming-Na WANG     E-mail:  wangjianqiu@imr.ac.cn

Cite this article: 

WANG Mingna, WANG Jianqiu, FENG Hao, KE Wei. CURRENT STATUS AND FUTURE OF RESEARCH ON CORROSION FOR LEAD-FREE SOLDER MATERIALS. J Chin Soc Corr Pro, 2011, 31(4): 250-254.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2011/V31/I4/250

[1] Mulugeta A, Guna S. Lead-free solders in microelectronics [J].Mater. Sci. Eng., 2000, 27: 95-141

[2] Tong X. Diffusion of lead-free soldering in electronics industry in China [J]. Chin. Popu. Res. Envi.,2007, 17(6): 66-71

[3] Lin C Y, Chou J H, Lee Y G, Mohanty U S. Preparation of Sn-3.5Ag nano-solder by supernatant process [J].J. Alloys Compd., 2009, 470: 328-331

[4] Janne J S, Sami T N, Toivo K L, Eero O R. Mechanical and microstructural properties of SnAgCu solder joints [J]. Mater. Sci. Eng., 2006, A 420: 55-62

[5] Cai J Q . Present situation and future development of low temperature lead-free solder mounting [J].Print. Circuit Inform., 2009, 1: 65-69

    (蔡积庆. 低温无铅焊料焊接的现状和未来展望 [J]. 印制电路信息, 2009, 1: 65-69)

[6] Katsuaki S. Advances in lead-free electronics soldering [J]. Curr. Opin. Solid State Mater. Sci., 2001, 5: 55-64

[7] Ma X L. Research on SnAgCu solder alloys [D].Beijing: Beijing University of Industry, Masteral Dissertation,2004: 9-10

    (马秀玲. SnAgCu系无铅钎料的研究 [D]. 北京:北京工业大学硕士学位论文, 2004: 9-10)

[8] Kamal M, Gouda E S. Effect of zinc additions on structure and properties ofSn--Ag eutectic lead-free solder alloy [J]. J.Mater. Sci.: Mater. Electron., 2008, 19: 81-84

[9] Ma X, He P. Lead-free Soldering Technology in Electronics Assembly [M]. Haerbin: Haerbin University Publishing House, 2006: 69

    (马鑫, 何鹏. 电子组装中的无铅软钎焊技术 [M]. 哈尔滨:哈尔滨大学出版社, 2006: 69)

[10] Li W L, Song J M, Lai Y S, et al. Alloying modification of Sn-Ag-Cu solders by manganese and titanium [J]. Microelectr. Reliabil.,2009, 49: 235-241

[11] Sharif A, Chan Y C. Liquid and solid state interfacial reactions of Sn-Ag-Cu and Sn-In-Ag-Cu solders with Ni-P under bump metallization [J]. Thin Solid Films, 2006, 504: 431-435

[12] Islam M N, Chan Y C, Rizvi M J, et al. Investigations of interfacial reactions of Sn-Zn based and Sn-Ag-Cu lead-free solder alloys as replacement for Sn-Pb solder [J]. J. Alloys Compd., 2005, 400: 136-144

[13] Wei X Q, Zhou L, Huang H Z. Effect of oxidation on wettability of Sn-Zn alloys [J]. Chin. J.Nonferrous Met., 2009, 19(1): 174-178

     (魏秀琴, 周浪, 黄惠珍. 氧化对Sn-Zn系无铅焊料润湿性的影响 [J]. 中国有色金属报, 2009, 19(1): 174-178)

[14] Zhang F W, Liu J, Yang F B, et al. Developing tendency and current situation of Sn-Ag-Cu lead-free solder [J]. Chin. J. Rare Met., 2005, 29(5): 619-624

     (张富文, 刘静, 杨福宝等. Sn-Ag-Cu无铅焊料的发展现状与展望 [J]. 稀有金属, 2005, 29(5): 619-624)

[15] Liu D. The Study on Mixture Design of Multiplex Sn-Zn system Lead-free Solder [D]. Changchun:Jilin University, 2008: 12-14

     (刘丹. 多元Sn-Zn系无铅钎料混料设计的研究 [D]. 长春: 吉林大学硕士学位论文, 2008: 12-14)

[16] Hu C C, Wang C K. Effects of composition and reflowing on the corrosion behavior of Sn-Zn deposits in brine media [J]. Electrochim.Acta, 2006, 51: 4125-4134

[17] Gueorgui P, Evgueni S, Svetla K, et al. Studies of the phase equilibria in the Ag-Sn-Zn system [J]. J. Alloys Compd., 2001, 327: 285-291

[18] Wei C, LiuY C, Gao Z M, et al. Effects of aging on structural evolution of the rapidly solidified Sn-Ag-Zn eutectic solder [J]. J. Alloys Compd., 2009, 468: 154-157

[19] Tsai Y L, Hwang W S. Solidification behavior of Sn-9Zn-xAg lead-free solder alloys [J]. Mater. Sci. Eng., 2005, A406 312-316

[20] Rocak D, Macek S, Sitek S, et al. A reliability study of the lead-free solder connections of miniature chip components on hybrid circuits [J]. Microelectron. Reliabil., 2007, 47: 986-995

[21] Andersson C, Liu J. Effects of corrosion on the low cycle fatigue behavior of Sn-4.0Ag-0.5Cu lead-free solder joints [J]. Int. J.Fatigue, 2008, 30: 917-930

[22] Zou H. Study of the reliability of lead-free solder joint [J]. J. Civil Aviation Univ.China, 2007, 25(3): 49-52

     (邹慧. 无铅焊点的可靠性研究 [J]. 中国民航大学学报, 2007, 25(3): 49-52)

[23] Shen J, Liu Y C, Han Y J, et al. Effects of cooling rates on microstructure and microhardness of lead-free Sn-3.5%Ag solders [J]. Trans. Nonferrous Met. Soc. China, 2006, 16: 59-64

[24] Bui Q V, Nam N D. Effect of Ag addition on the corrosion properties of Sn-based solder alloys [J]. Mater. Corros., 2009, 61(1): 30-33

[25] Zhao M Q, Lei A L. The Corrosion and Protection of Metal [M]. Beijing: National Defence Industry Publishing House, 2002: 122

     (赵麦群, 雷阿丽. 金属的腐蚀与防护 [M]. 北 京: 国防工业出版社, 2002: 122)

[26] Li D Z, Paul P C, Liu C Q. Corrosion characterization of tin-lead and lead free solders in 3.5 wt% NaCl solution [J].Corros. Sci., 2008, 50: 995-1004

[27] TianHua Institute of Chemical Machinery & Automation. Manual of corrosion and protection, Volume 1, Theory of corrosion\examination and check [M]. Beijing: Chemical industry Publishing House, 2009: 16

     (天华化工机械及自动化研究设计院主编. 腐蚀与防护手册, 第一卷, 腐蚀理论\试验及检测 [M]. 北京: 化学工业出版社, 2009: 16)

[28] Masato M, Kazuma M, Takeshi S. Corrosion of tin alloys in sulfuric and nitric acids [J]. Corros. Sci., 2002, 44: 887-898

[29] Yoon J W, Noh B I, Kim B K. Wettability and interfacial reactions of Sn-Ag-Cu/Cu and Sn-Ag-Ni/Cu solder joints [J]. J. Alloys Compd., 2009: 142-147

[30] Huwang C W, Suganuma K. Joint reliability and high temperature stability of Sn-Ag-Bi lead-free solder with Cu and Sn-Pb/Ni/Cu substrates [J]. Mater. Sci. Eng., 2004,A373: 187-194

[31] Rosalbino F, Angelini E, Zanicchi G.Corrosion behaviour assessment of lead-free Sn-Ag-M (M=In, Bi, Cu) solder alloys [J].Mater. Chem. Phys., 2008,109: 386-391

[32] Oulfajrite H, Sabbar A, Boulghallat M, et al. Electrochemical behavior of a new solder material (Sn-In-Ag) [J]. Mater.Lett., 2003, 57: 4368-4371

[33] Sun L H. The Influence with the Trace Content of Ni & Re for Sn0.7Cu Lead-free Solder [D]. Xian: Xian University of Technology, 2008: 36

     (孙立恒. 微量Ni\Re对Sn0.7Cu无铅焊料性能的影响 [D]. 西安: 西安理工大学, 2008: 36)

[34] Fan Z G. Research of the Electrochemical Corrosion Behaviors of Lead-free Solders [D].Dalian: Dalian University of Technology, 2008: 22-36

     (樊志罡. 无铅焊料的电化学腐蚀行为研究 [D]. 大连: 大连理工大学, 2008: 22-36)

[35] Li J X. The Research of Sn-Zn System without Ag Lead-free Solder [D]. Zhenjiang: Jiangsu University, 2009: 6

     (李建新. 新型Sn-Cu系无银无铅焊料的研究 [D]. 镇江:江苏大学, 2009: 6)

[36] Rosalbino F, Angelini E, Zanicchi G.Electrochemical corrosion study of Sn-3Ag-3Cu solder alloys in NaCl solution [J]. Electrochim.Acta, 2009, 54(28): 7231-7235

[37] Li P P, Zhou J, Sun Y S, et al. Investigation on corrosion performance of lead-free solders [J].Function Mater., 2007, 38: 3267-3270

     (李培培, 周建, 孙扬善等. 无铅焊料的盐雾腐蚀性能研究 [J]. 功能材料, 2007, 38: 3267-3270)

[38] Mohanty U S, Lin K L. Electrochemical corrosion behaviour of Pb-free Sn-8.5Zn-0.05Al-XGa and Sn-3Ag-0.5Cu alloys in chloride containing aqueous solution [J]. Corros. Sci., 2008, 50: 2437-2443

[39] Chang H, Chen H T. Generation of Tin (Ⅱ) oxide crystals on lead-free solder joints in deionized water [J]. J. Electron. Mater.2009, 38(10): 2170-2178

[40] Wu C M L, Yu D Q, Law C M T, et al. Properties of lead-free solder alloy with rare earth elements additions [J]. Mater.Sci. Eng., 2004, R44: 1-44

[41] Wu B Y, Chan Y C, Alam M O. Electrochemical corrosion study of Pb-free solders [J]. J. Mater.Res., 2006, 21(1): 62-70

[42] Lu B, Zhu H W, Huang H. Effect of Ge on oxidation resistance of Sn-0.3Ag-0.7Cu lead-free solder [J]. Casting Forging Weld., 2009,38(7): 6-13

     (卢斌, 朱华伟, 黄欢. Ge对Sn-3.0Ag-0.7Cu基无铅钎料抗氧化性影响 [J]. 金属铸锻焊技术,2009, 38(7): 6-13)

[43] Lu B, Li H, Wang J H, et al. Effect of Er on microstructure and properties of Sn-3.0Ag-0.5Cu lead-free solder alloy [J]. Chin. J. Nonferrous Met., 2007, 17(4): 518-524

     (卢斌, 栗惠, 王娟辉等. 稀土Er对Sn-3.0Ag-0.5Cu无铅焊料合金的组织与性能的影响 [J]. 中国有色金属学报, 2007, 17(4): 518-524)

[44] Tian J. Corrosion properties of SnAgCuEr lead-free solders [J]. China Sci. Technol.Inform., 2006, 24:293-295

     (田君, SnAgCuEr系钎料的抗腐蚀性研究 [J]. 中国科技信息, 2006, 24: 293-295)

[45] Liu J, Xu J, Zhang F W, et al. Property of new type lead-free solder Sn-Ag-Cu-Cr-X [J].Chin. J. Rare Met., 2005, 29(5): 625-630

     (刘静, 徐骏, 张富文等. 新型无铅焊料Sn-Ag-Cu-Cr-X的性能研究 [J]. 稀有金属, 2005, 29(5): 625-630)

[46] Dudek M A, Chawla N. Oxidation behavior of rare-earth-containing Pb-free solders [J].J. Electron. Mater., 2009, 38(2): 210-220

[47] Huang H Z. A Study of Sn-9Zn Lead-free Electronic Solder and its Improvement by Alloying [J]. Nanchang : Nanchang University, 2006: 11

     (黄惠珍. Sn-9Zn无铅电子焊料及其合金化改性研究 [D]. 南昌:南昌大学, 2006: 11)

[48] Katsuaki S, Kuen S K. Sn-Zn low temperature solder [J]. J. Mater. Sci.: Mater.Electron., 2007, 18: 121-127

[49] Song J M, Liu P C, Shih C L, et al. Role of Ag in the formation of interfacial intermetallic phases in Sn-Zn soldering [J]. J. Electron.Mater., 2005, (34)9: 1249-1253

[50] Xia Z D, Mu N, Shi Y W. Corrosion behavior of tin-zinc based alloy solder [J]. J. Chin.Soc. Corros. Prot., 2003, 23(4): 234-238

     (夏志东, 穆楠, 史耀武. 锡锌钎料的腐蚀行为 [J]. 中国腐蚀与防护学报, 2003, 23(4): 234-238)

[51] Xia Z D. Investigation and evolution of high capability green lead-free solder [J]. Metall.Functional Mater., 2002, (23): 185-191

     (夏志东. 绿色高性能无铅钎料的研究与进展 [J]. 电子工艺技术, 2002, (23): 185-191)

[52] Xian J Y. Atmospheric corrosion of Sn-9Zn eutectic Pb-free solder [J]. Corros. Sci. Prot.Technol., 2008, 20(5): 347-349

     (冼俊扬. Sn-9Zn共晶型无铅焊料的大气腐蚀行为 [J]. 腐蚀科学与防护技术, 2008, 20(5): 347-349)

[53] Jiang J X, Lee J E, Kim K S, et al. Oxidation behavior of Sn-Zn solders under high-temperature and high-humidity conditions [J].J. Alloys Compd.,2008, 462: 244-251

[54] Chang T C, Wang J W, Wang M C. Solderability of Sn-9Zn-0.5Ag-1In lead-free solder on Cu substrate Part 1. Thermal properties,microstructure, corrosion and oxidation resistance [J]. J. Alloys Compd.,2006, 422: 239-243

[55] El-Daly A A, Swilem Y, Makled M H, et al. Thermal and mechanical properties of Sn-Zn-Bi lead-free solder alloys [J]. J. Alloys Compd., 2009, 484: 134-142

[56] Kim K S, Matsuura T, Suganuma K. Effects of Bi and Pb on oxidation in humidity for low-temperature lead-free solder systems [J]. J.Electron. Mater., 2006, 35(1): 41-47

[57] Wang H, Xue S B, Chen W X. Effect of Al addition on corrosion resistance and high-temperature oxidation resistance of Sn-9Zn lead-free solder [J]. Electric Welding Mach., 2008, 38(9): 61-64

     (王慧, 薛松柏, 陈文学. Al对Sn-Zn钎料耐腐蚀及高温抗氧化性的影响 [J]. 电焊机, 2008, 38(9): 61-64)

[58] Wu X J, Xue F, Zhou J, et al. Effect of Cu and Ni on microstructure and properties of Sn-Zn-Al lead-free solders [J]. J. Southeast Univ.,2009, 39(3): 623-628

     (吴晓婧, 薛烽, 周健等. Cu\Ni对Sn-Zn-Al无铅焊料组织和性能的影响 [J]. 东南大学学报, 2009, 39(3): 623-628)

[59] Fan Z G, Ma H T, Wang L. Effect of Cu on electrochemical corrosion behavior of lead-free Sn-9Zn solder [J]. Chin. J. Nonferrous Met.,2007, 17(8): 1302-1306

     (樊志罡, 马海涛, 王来. Cu对Sn-9Zn无铅钎料电化学腐蚀性能的影响 [J]. 中国有色金属学报, 2007,17(8): 1302-1306)

[60] Lee J E, Kim K S, Inoue M, et al. Effects of Ag and Cu addition on microstructural properties and oxidation resistance of Sn-Zn eutectic alloy [J]. J. Alloys Compd., 2008, 454: 310-320

[61] Li X Y, Lei Y P, Xia Z D, et al. Influence of the content of Ag to corrosion nature of Sn-Zn-Ag lead-free solders [J]. Electron. Proc. Technol.,2006, 27(2): 70-77

     (李晓燕, 雷永平, 夏志东等. Ag含量对Sn-Zn-Ag无铅钎料腐蚀性能的影响 [J]. 电子工艺技术, 2006, 27(2): 70-77)

[62] Mohanty U S, Lin K L. Effect of Al on the electrochemical corrosion behaviour of Pb free Sn-8.5 Zn-0.5 Ag-XAl-0.5 Ga solder in 3.5% NaCl solution [J]. Appl. Surf. Sci., 2006, 252: 5907-5916

[63] Mohanty U S, Lin K L. Electrochemical corrosion behaviour of lead-free Sn-8.5 Zn-XAg-0.1 Al-0.5 Ga solder in 3.5% NaCl solution [J]. Mater.Sci. Eng., 2005, A406: 34-42
 
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!