Please wait a minute...
J Chin Soc Corr Pro  2008, Vol. 28 Issue (2): 112-115     DOI:
Research Report Current Issue | Archive | Adv Search |
The Heat Treatment and the Corrosive Prevention of Bronz
;;
中国科学技术大学
Download:  PDF(946KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  This paper presents an analytical study on two ternary Cu-Sn-Pb systems forged by using the Chinese traditional casting technique with difference in the amount of tin 15%. We had some of these copper alloys heat?鄄ed under different temperatures, then kept all the heated and unheated samples under an acid and chlorine-rich environment for several days.With the combined use of XRD analysis and metallographic examination, corrosion resistance of copper alloys was carefully discussed. The delta phase decomposed or diminished while the alpha phase recrystallized. When a proper temperature was chosen for reheating, the delta phase was found eliminated and the intergranular structure changed again. This experiment indicates that by doing so the corrosion resistance of copper alloys can be greatly improved, which in return helps controlling the outbreak of bronze disease.
Key words:  bronze alloy      corrosion      microstructure      intergranular structure      heat treatment      
Received:  26 July 2006     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

. The Heat Treatment and the Corrosive Prevention of Bronz. J Chin Soc Corr Pro, 2008, 28(2): 112-115 .

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2008/V28/I2/112

[1]Liu Y,Yuan S X,Zhang X M.Research on the corrosion of bronze wares excavated from Tianma Qucun site of Jin state in Zhou Dy-nasty[J].Sciences of Conservation and Archaeology,2002,12(2):9-18(刘煜,原思训,张晓梅.天马一曲村周代晋国墓地出土青铜器锈蚀研究[J].文物保护与考古科学,2002,12(2):9-18)
[2]Luoyang Copper Processing Factory.Metallographic Graphs of Copper and Copper Alloys[M].Luoyang:Metallurgical Industry Publishing Company,1983(洛阳铜加工厂中心试验室金相组.铜及铜合金金相谱图[M].洛阳:冶金工业出版社,1983)
[3]Wang C S,Yuan M,Xiong Y H.Bronze composition and the for-mation of powdery corrosion[J].J.China Univ.Sci.Technol.,1995,25(4):448-453(王昌燧,袁玫,熊永红.青铜合金成分与粉状锈的生成[J].中国科学技术大学学报,1995,25(4):448-453)
[4]Zhang C Q,Wu Y S,Fang M X,et al.The anodic behavior of alloy and ingredient of bronze alloy[J].J.Mater.Eng.,1999,11:23-26(张长桥,吴佑实,方梅仙等.青铜合金成分与合金的阳极行为[J].材料工程,1999,11:23-26)
[5]Zhang X M,Yuan S X.Research on the corrosion of bronzes from Zhouyuan site and Yu state cemeteries[J].Sciences of Conserva-tion and Archaeology,1999,11(2):7-18(张晓梅,原思训.周原遗址及渔国墓地出土青铜器锈蚀研究[J].文物保护与考古科学,1999,11(2):7-18)
[6]Wu Y S,Fan C Z,Minoru Suzuki.A calculation of quantum-me-chanics for the preferential corrosion on the crystal edge of bronzealloy[J].Sciences of Conservation and Archaeology,1994,6(1):1-8(吴佑实,范崇政,铃木稔.青铜合金表面晶体棱角处优先生锈的量子力学证明[J].文物保护与考古科学,1994,6(1):1-8)
[7]Fan C Z,Wu Y S,Wang C S.The electro-chemical corroding of powder-corrosion and analysis of valent-electron structure[J].Chin.J.Chem.Phys.,1992,5(6):479-484(范崇政,吴佑实,王昌燧等.粉状锈生成的电化学腐蚀及价电子结构分析[J].化学物理学报,1992,5(6):479-484)
[8]Zhang L J,Sun S Y,Yin W Z,et al.Study of element and mi-crostructure of bronze excavated from Yans′tombs at Liulihe,Bei-jing[J].Cultural Relics,2005,6:82-91(张利洁,孙淑云,殷玮璋等.北京琉璃河燕国墓地出土铜器的成分和金相研究[J].文物,2005,6:82-91)
[9]Tian C H.The Technical History of Ancient Chinese Metals[M].Sichuan:Sichuan Science and Technology Publishing Company,1988(田长浒.中国金属技术史[M].四川:四川科技出版社,1988)
[10]He T K.On simulated tests for the heat treatment of ancient bronzemirrors[J].Studies in the History of Sciences,1994,13(1):76-78(何堂坤.古青铜热处理模拟试验[J].自然科学史研究,1994,13(1):76-78)
[11]Fan C Z,Wang C S,Wang S J,et al.Study of formation mecha-nism of bronze powder corrosion[J].China Science(Series B),1991,3:239-245(范崇政,王昌燧,王胜君等.青铜器粉状锈生成机理研究[J].中国科学(B辑),1991,3:239-245)
[12]Fan C Z,Hu K L,Xing J Y,et al.A follow-observation on the de-veloping process of the powder corrosion[J].Sciences of Conser-vation and Archaeology,1997,9(1):19-24(范崇正,胡克良,邢锦云等.青铜粉状锈生长过程的跟踪观测[J].文物保护与考古科学,1997,9(1):19-24)
[13]Fan C Z,Wu Y S,Wang C S,et al.The dynamics of developing process of the powder corrosion[J].China Science(Series B),1992,5:479-484(范崇政,吴佑实,王昌燧等.青铜器粉状锈生长过程的动力学研究[J].中国科学(B辑),1992,5:479-484)
[1] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[4] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[5] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[6] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[7] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[8] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[9] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[10] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[11] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[12] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[13] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[14] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!