Please wait a minute...
J Chin Soc Corr Pro  2006, Vol. 26 Issue (2): 109-114     DOI:
Research Report Current Issue | Archive | Adv Search |
Studies of Mechanism on Photogenerated Cathodic Protection of the TiO2-SnO2 Composite Films
;;Changjian Lin
厦门大学化学系
Download:  PDF(220KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  By the sol-gel method and spin-coating process,the nano TiO2-SnO2 composite films have been prepared on the surface of the indi um-tin oxide(ITO)glass and 316L stainless steel.The morphology and crystalline s tructure have been characterized by AFM and XRD.The anticorrosion property of th e composite coatings has been studied under dark condition by electrochemical me thods.Similarly,the performance of photogenerated cathodic protection of the com posite coatings has been measured in 0.5 mol/L NaCl solution(pH=46)by combinin g photoelectrochemical system with corrosion electrochemical system under UV illu mination.The results show that in dark the nano TiO2-SnO2 composite films ha ve a poorer anticorrosion property than that of the nano TiO2 coatings.Under U V illumination condition the composite films as a photoanode provide a cathodic protection for 316L,and when the UV light is shut off,its photogenerated potenti al can remain a cathodic protection of metal for 6 hours.The mechanism of the ph otogenerated cathodic protection has also been studied by electrochemical impeda nce spectra.
Key words:  nano TiO2-SnO2 composite film      photogenerated catho dic protection      corrosion      mechanism      
Received:  17 August 2004     
ZTFLH:  B030602  

Cite this article: 

Changjian Lin. Studies of Mechanism on Photogenerated Cathodic Protection of the TiO2-SnO2 Composite Films. J Chin Soc Corr Pro, 2006, 26(2): 109-114 .

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2006/V26/I2/109

[1]Rdgan O,Gratzel M.A low-cost-efficiency solar cell based ondye-sensitized colloidal TiO2[J].Nature,1991,737-739
[2]Peiro A M,Peral J,Domingo C,et al.Low-temperature deposi-tion of TiO2thin films with photocatalytic activity from colloidalanatase aqueous solutions[J].Chem.Mater.,2001,13:2567-2573
[3]Vinodgopal K,Hotchandani S,Kamat P V.Electrochemically as-sisted photocatalysis:titania particulate film electrodes for photo-catalytic degradation of 4-chlorophenol[J].J.Phys.Chem.,1993,97:9040-9044
[4]Nakajima A,Hashimoto K,Watanabe T.Transparent superhy-drophobic thin films with self-cleaning properties[J].Langmuir,2000,16:7044-7047
[5]Park H,Kim K Y,Choi W.A novel photoelectrochemical methodof metal corrosion using a TiO2solar panel[J].Chem.Commun.,2001,14:281-282
[6]Ohko Y,Saitoh S,Tatsuma S,et al.Photoelectrochemical anticor-rosion and self-cleaning effects of a TiO2coating for type 304stainless steel[J].J.Electrochem.Soc.,2001,148(1):B24-B28
[7]Park H,Kim K Y,Choi W.Photoelectrochemical approach formetal corrosion prevention using a semiconductor photoanode[J].J.Phys.Chem.B,2002,106:4775-4781
[8]Kang M,Choung S J,Park J Y.Photocatalytic performance ofnanometer-sized FexOy/TiO2particle synthesized by hydrother-mal method[J].Catalysis Today,2003,87(1-4):87-97
[9]Tatsuma T,Satioh S,Ngaotra K,et al.Energy storage of TiO2-WO3photocatalysis system with an energy in the gas phase[J].Langmuir,2002,18:7777-7779
[10]Tatsuma T,Satioh S,Ohko Y,et al.TiO2-WO3photoelec-trochemical anticorrosion system with an energy storage ability[J].Chem.Mater.,2001,13:2838-2842
[11]Liu Z Y,Pan K,Wang M J,et al.Influence of the mixed ratio onthe photocurrent of the TiO2/SnO2composite photoelectrodes sen-sitized by mercurochrome[J].J.Photochem.Photobio.A:Chem.,2003,157:39-46
[12]Shen G X,Chen C Y,Lin C J.Formation and characterization ofwater-repellent nano TiO2coatings and studying its anticorrosionproperty[J].Electrochemistry(Chinese),2004,10:65-69
[13]Raghavan S,Shinohara T.Investigations on SnO2-TiO2compos-ite photoelectrodes for corrosion protection[J].Electrochem.Com-mun.,2003,5:897-907
[14]Vinodgopal K,Bedja I,Kamat P V.Nanostructured semiconductorfilm for photocatalysis.Photoelectrochemical behavior of SnO2/TiO2composite system and its role in photocatalytic degradation ofa textile azo dye[J].Chem.Mater.,1996,8:2180-2187
[15]Boukamp B.Equivalent Circuit Users Manual and Software(Ver.4.51)University of Twente the Netherlands.2nd[M].Amsterd-cur:Twente Preston Company,1993
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!