Please wait a minute...
J Chin Soc Corr Pro  2004, Vol. 24 Issue (2): 121-124     DOI:
Research Report Current Issue | Archive | Adv Search |
CORROSION OF HIGH TEMPERATURE ALLOY GH132 TUBE IN THE ENVIRONMENT OF DISPOSING MISSILE PROPELLANT WASTEWATER BY SUPERCRITICAL WATER OXIDATION
;;Wei Ke
中科院金属所(南区)
Download:  PDF(211KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Corrosion behavior of a candidate connecting tube, a GH132 tube, for supercritical water oxidation(SCWO)system in the environment of disposing the propellant wastewater by SCWO method with the range of temperatures from room temperature to 520℃ and the pressure of 27.2MPa was studied. The morphology of corrosion surface was analyzed using SEM. Intergranular corrosion (IGC) and shallow pitting occurred respectively when the temperature was above 180℃ and 260℃. Severe stress corrosion cracking was found at 280℃ which leaded to leak of the tube after 151h of testing. The maximum decrease in wall thickness of the tube was measured between 340℃ and 370℃,which amounted to 100μm. Within the supercritical temperature range, corrosion of the tube was obviously mitigated and only very shallow pits could be found. Corrosion products were analyzed using EDX and Fourier transfer infrared spectrometry (FTIR). The selective dissolution of elements such as Fe, Cr and Ni and the formation of corresponding oxides and hydroxides accelerated general corrosion within the subcritical temperature range; while, in the supercritical temperature range, corrosion products was protective due to their very low solubilities. Results showed that GH132 tubes could not be used as connecting tubes at subcritical temperatures.
Key words:  Supercritical Water Oxidation(SCWO)      superalloy GH132      intergranular corrosion      pitting      stress corro      
Received:  17 December 2003     
ZTFLH:  TG172.5  

Cite this article: 

Wei Ke. CORROSION OF HIGH TEMPERATURE ALLOY GH132 TUBE IN THE ENVIRONMENT OF DISPOSING MISSILE PROPELLANT WASTEWATER BY SUPERCRITICAL WATER OXIDATION. J Chin Soc Corr Pro, 2004, 24(2): 121-124 .

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2004/V24/I2/121

[1]BourhisAL ,SwallowKC ,HongGT ,etal.Theuseofrateen hancersinsupercriticalwateroxidation[J].ACSSYMSER 1995,608:338-347
[2]MittonDB ,OrzalliJC ,LatanisionRM .Corrosionstudiesinsuper criticalwateroxidationsystems[J].ACSSYMSER ,1995,608:327-337
[3]KritzerP ,BoukisN ,DinjusE .Corrosionofalloy625inhigh-tem perature,high-pressuresulfatesolutions[J].Corrosion,1998,54(9):689-699
[4]ZhangL ,HanEH ,ZhangZE ,GuanH ,KeW .Thecorrosionofstainlesssteelandnickel-basedalloysinsubcriticalwatercondition[J].ActaMetall.Sin.,2003,39(6):337-342(张丽,韩恩厚,张召恩,关辉,柯伟.不锈钢及镍基合金在亚临界水环境中的腐蚀研究[J].金属学报,2003,39(6):337-342)
[5]FujimotoS ,NewmanRC ,SmithGS ,etal.Validationofapercolationmodelforpassivationofiron-basedbinaryalloys[J].Intern.Soc.Electrochem.,1992,(92-2):378-386
[6]SwaddleTW ,LidtonJH ,GuastallaG .Volumeprofileforsubstitu tioninlabilechromium(Ⅲ)complexes:reactionsofaqueous[Cr(Hedta)OH2]and[Cr(edta)](-)withthiocyanateion[J].J .Chem.,1971(49):2433-2439.
[7]OrgenM ,StolzU ,KirchheimR .ESCAmeasurementsoffilmsonmolybdenumformedinthepassiveandtranspassiveregion[J].Cor ros.Sci.,1990,30(4):377-381
[8]KanekoN ,AbeS .Proc.mechanismoftheendgraincorrosioninstainlesssteelsanditspreventivemethod[A].Int.Conf.StainlessSteels(Chiba,Japan:ISIJ),1991:280-291
[9]FrantzJD ,MarshallWL .Equationfortheionproductofwater:0-100degreeC ,1-10000bars[J].J.Sci.1984,284(6):651-667
[10]TesterJW ,HolgateHR ,ArmelliniFJ ,etal.Inemergingtech nologiesinhazardouswastemanagementⅢ[J].TedearDW ,Poh landFG .Editors,ACSSYMSER ,1993,518:35-764
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[3] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[4] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[5] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[6] AI Fangfang, CHEN Yiqing, ZHONG Bin, LI Lin, GAO Peng, SHAN Hongyu, SU Xiandong. Stress Corrosion Cracking Behavior of T95 Oil Well Pipe Steel in Sour Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.
[7] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[8] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[9] HE San, SUN Yinjuan, ZHANG Zhihao, CHENG Jie, QIU Yunpeng, GAO Chaoyang. Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[10] LI Qing, ZHANG Deping, LI Xiaorong, WANG Wei, SUN Baozhuang, AI Chi. Comparison of Stress Corrosion Behavior of TP110TS and P110 Steel in a Simulated Annular Environment of CO2 Injection Well[J]. 中国腐蚀与防护学报, 2020, 40(4): 302-308.
[11] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[12] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[13] JIA Yizheng, WANG Baojie, ZHAO Mingjun, XU Daokui. Effect of Solid Solution Treatment on Corrosion and Hydrogen Evolution Behavior of an As-extruded Mg-Zn-Y-Nd Alloy in an Artificial Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[14] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[15] HE Zhuang,WANG Xingping,LIU Zihan,SHENG Yaoquan,MI Mengxin,CHEN Lin,ZHANG Yan,LI Yuchun. Passivation and Pitting of 316L and HR-2 Stainless Steel in Hydrochloric Acid Liquid Membrane Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
No Suggested Reading articles found!